Energy Cost of Running in Well-Trained Athletes: Toward Slope-Dependent Factors

Click name to view affiliation

Marcel Lemire
Search for other papers by Marcel Lemire in
Current site
Google Scholar
PubMed
Close
,
Romain Remetter
Search for other papers by Romain Remetter in
Current site
Google Scholar
PubMed
Close
,
Thomas J. Hureau
Search for other papers by Thomas J. Hureau in
Current site
Google Scholar
PubMed
Close
,
Bernard Geny
Search for other papers by Bernard Geny in
Current site
Google Scholar
PubMed
Close
,
Evelyne Lonsdorfer
Search for other papers by Evelyne Lonsdorfer in
Current site
Google Scholar
PubMed
Close
,
Fabrice Favret
Search for other papers by Fabrice Favret in
Current site
Google Scholar
PubMed
Close
, and
Stéphane P. Dufour
Search for other papers by Stéphane P. Dufour in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: This study aimed to determine the contribution of metabolic, cardiopulmonary, neuromuscular, and biomechanical factors to the energy cost (ECR) of graded running in well-trained runners. Methods: Eight men who were well-trained trail runners (age: 29 [10] y, mean [SD]; maximum oxygen consumption: 68.0 [6.4] mL·min−1·kg−1) completed maximal isometric evaluations of lower limb extensor muscles and 3 randomized trials on a treadmill to determine their metabolic and cardiovascular responses and running gait kinematics during downhill (DR: −15% slope), level (0%), and uphill running (UR: 15%) performed at similar O2 uptake (approximately 60% maximum oxygen consumption). Results: Despite similar O2 demand, ECR was lower in DR versus level running versus UR (2.5 [0.2] vs 3.6 [0.2] vs 7.9 [0.5] J·kg−1·m−1, respectively; all P < .001). Energy cost of running was correlated between DR and level running conditions only (r2 = .63; P = .018). Importantly, while ECR was correlated with heart rate, cardiac output, and arteriovenous O2 difference in UR (all r2 > .50; P < .05), ECR was correlated with lower limb vertical stiffness, ground contact time, stride length, and step frequency in DR (all r2 > .58; P < .05). Lower limb isometric extension torques were not related to ECR whatever the slope. Conclusion: The determining physiological factors of ECR might be slope specific, mainly metabolic and cardiovascular in UR versus mainly neuromuscular and mechanical in DR. This possible slope specificity of ECR during incline running opens the way for the implementation of differentiated physiological evaluations and training strategies to optimize performance in well-trained trail runners.

The authors are with the Faculty of Medicine, Translational Medicine Federation (FMTS), University of Strasbourg, Strasbourg, France; Lemire, Hureau, Favret, and Dufour are also with the Faculty of Sport Sciences at the university. Lemire is also with the IRIMAS, University of Haute Alsace, Mulhouse, France. Remetter and Lonsdorfer are also with the Physical and Respiratory Rehabilitation Medicine Dept, University Inst of Rehabilitation Clémenceau, University of Strasbourg, Strasbourg-Illkirch, France. Geny is also with the Dept of Physiology and Functional Explorations, Civil Hospital, University Hospitals of Strasbourg, Strasbourg, France.

Lemire (marcel.lemire@unistra.fr) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586(1):3544. PubMed ID: 17901124 doi:10.1113/jphysiol.2007.143834

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Barnes KR, Kilding AE. Running economy: measurement, norms, and determining factors. Sports Med Open. 2015;1(1):8. PubMed ID: 27747844 doi:10.1186/s40798-015-0007-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Daniels JT. A physiologist’s view of running economy. Med Sci Sports Exerc. 1985;17(3):332338. PubMed ID: 3894870 doi:10.1249/00005768-198506000-00006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Lemire M, Falbriard M, Aminian K, Millet GP, Meyer F. Level, uphill, and downhill running economy values are correlated except on steep slopes. Front Physiol. 2021;12:959. doi:10.3389/fphys.2021.697315

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Lemire M, Remetter R, Hureau TJ, et al. High-intensity downhill running exacerbates heart rate and muscular fatigue in trail runners. J Sports Sci. 2021;39(7):815825. doi:10.1080/02640414.2020.1847502

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Lemire M, Hureau TJ, Remetter R, et al. Trail runners cannot reach VO2max during a maximal incremental downhill test. Med Sci Sports Exerc. 2020;52(5):11351143. PubMed ID: 31815832 doi:10.1249/MSS.0000000000002240

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Lemire M, Hureau TJ, Favret F, et al. Physiological factors determining downhill vs uphill running endurance performance. J Sci Med Sport. 2020;24(1):8591. PubMed ID: 32646746 doi:10.1016/j.jsams.2020.06.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Noakes TD. Implications of exercise testing for prediction of athletic performance: a contemporary perspective. Med Sci Sports Exerc. 1988;20(4):319330. PubMed ID: 3050352 doi:10.1249/00005768-198808000-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Balducci P, Clemencon M, Trama R, Blache Y, Hautier C. Performance factors in a mountain ultramarathon. Int J Sports Med. 2017;38(11):819826. PubMed ID: 28799161 doi:10.1055/s-0043-112342

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Butler RJ, Crowell HP III, Davis IM. Lower extremity stiffness: implications for performance and injury. Clin Biomech. 2003;18(6):511517. doi:10.1016/S0268-0033(03)00071-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Willis SJ, Gellaerts J, Mariani B, Basset P, Borrani F, Millet GP. Level versus uphill economy and mechanical responses in elite ultra-trail runners. Int J Sports Physiol Perform. 2019;14(7):10011005. PubMed ID: 30676150 doi:10.1123/ijspp.2018-0365

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Breiner TJ, Ortiz ALR, Kram R. Level, uphill and downhill running economy values are strongly inter-correlated. Eur J Appl Physiol. 2018;119(1):257264. doi:10.1007/s00421-018-4021-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Minetti AE, Moia C, Roi GS, Susta D, Ferretti G. Energy cost of walking and running at extreme uphill and downhill slopes. J Appl Physiol. 2002;93(3):10391046. PubMed ID: 12183501 doi:10.1152/japplphysiol.01177.2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Rousanoglou EN, Noutsos K, Pappas A, et al. Alterations of vertical jump mechanics after a half-marathon mountain running race. J Sport Sci Med. 2016;15(2):277286.

    • Search Google Scholar
    • Export Citation
  • 15.

    Born DP, Stoggl T, Swaren M, Bjorklund G. Running in hilly terrain: NIRS is more accurate to monitor intensity than heart rate. Int J Sports Physiol Perform. 2016;12(4):440447. PubMed ID: 27396389 doi:10.1123/ijspp.2016-0101

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Fletcher JR, Esau SP, Macintosh BR. Economy of running: beyond the measurement of oxygen uptake. J Appl Physiol. 2009;107(6):19181922. doi:10.1152/japplphysiol.00307.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Billat V, Koralsztein JP. Significance of the velocity at VO2max and time to exhaustion at this velocity. Sports Med. 1996;22(2):90108. PubMed ID: 8857705 doi:10.2165/00007256-199622020-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Foster C, Lucia A. Running economy: the forgotten factor in elite performance. Sports Med. 2007;37(4–5):316319. PubMed ID: 17465597 doi:10.2165/00007256-200737040-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Charloux A, Lonsdorfer-Wolf E, Richard R, et al. A new impedance cardiograph device for the non-invasive evaluation of cardiac output at rest and during exercise: comparison with the “direct” Fick method. Eur J Appl Physiol. 2000;82(4):313320. PubMed ID: 10958374 doi:10.1007/s004210000226

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Haycock GB, Schwartz GJ, Wisotsky DH. Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Pediatr. 1978;93(1):6266. PubMed ID: 650346 doi:10.1016/S0022-3476(78)80601-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Samozino P, Rabita G, Dorel S, et al. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand J Med Sci Sports. 2016;26(6):648658. PubMed ID: 25996964 doi:10.1111/sms.12490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Gregor RJ, Costill DL. A comparison of the energy expenditure during positive and negative grade running. J Sports Med Phys Fitness. 1973;13(4):248252. PubMed ID: 4787626

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Dewolf AH, Penailillo LE, Willems PA. The rebound of the body during uphill and downhill running at different speeds. J Exp Biol. 2016;219(Pt 15):22762288. PubMed ID: 27207641

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Balducci P, Clemencon M, Morel B, Quiniou G, Saboul D, Hautier CA. Comparison of level and graded treadmill tests to evaluate endurance mountain runners. J Sport Sci Med. 2016;15(2):239246.

    • Search Google Scholar
    • Export Citation
  • 25.

    Bailey SP, Pate RR. Feasibility of improving running economy. Sports Med. 1991;12(4):228236. PubMed ID: 1784875 doi:10.2165/00007256-199112040-00002

  • 26.

    Lemire M, Lonsdorfer-Wolf E, Isner-Horobeti ME, et al. Cardiorespiratory responses to downhill versus uphill running in endurance athletes. Res Q Exerc Sport. 2018;89(4):511517. PubMed ID: 30230980 doi:10.1080/02701367.2018.1510172

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Lima LCR, Nosaka K, Chen TC, Pinto RS, Greco CC, Denadai BS. Decreased running economy is not associated with decreased force production capacity following downhill running in untrained, young men. Eur J Sport Sci. 2020;21(1):8492. PubMed ID: 32090683 doi:10.1080/17461391.2020.1727570

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Giovanelli N, Taboga P, Rejc E, Lazzer S. Effects of strength, explosive and plyometric training on energy cost of running in ultra-endurance athletes. Eur J Sport Sci. 2017;17(7):805813. PubMed ID: 28394719 doi:10.1080/17461391.2017.1305454

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Fletcher JR, Esau SP, MacIntosh BR. Changes in tendon stiffness and running economy in highly trained distance runners. Eur J Appl Physiol. 2010;110(5):10371046. PubMed ID: 20683611 doi:10.1007/s00421-010-1582-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4392 1055 35
Full Text Views 120 63 9
PDF Downloads 117 30 8