A High-Intensity Warm-Up Increases Thermal Strain But Does Not Affect Repeated Sprint Performance in Athletes With a Cervical Spinal Cord Injury

Click name to view affiliation

Thomas J. O’Brien
Search for other papers by Thomas J. O’Brien in
Current site
Google Scholar
PubMed
Close
,
Simon J. Briley
Search for other papers by Simon J. Briley in
Current site
Google Scholar
PubMed
Close
,
Barry S. Mason
Search for other papers by Barry S. Mason in
Current site
Google Scholar
PubMed
Close
,
Christof A. Leicht
Search for other papers by Christof A. Leicht in
Current site
Google Scholar
PubMed
Close
,
Keith Tolfrey
Search for other papers by Keith Tolfrey in
Current site
Google Scholar
PubMed
Close
, and
Victoria L. Goosey-Tolfrey
Search for other papers by Victoria L. Goosey-Tolfrey in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To compare the effects of typical competition versus high-intensity intermittent warm-up (WU) on thermoregulatory responses and repeated sprint performance during wheelchair rugby game play. Methods: An intermittent sprint protocol (ISP) simulating the demands of wheelchair rugby was performed by male wheelchair rugby players (7 with cervical spinal cord injury [SCI] and 8 without SCI) following 2 WU protocols. These included a typical competition WU (control) and a WU consisting of high-intensity efforts (INT). Core temperature (Tcore), thermal sensation, and thermal comfort were recorded. Wheelchair performance variables associated to power, speed, and fatigue were also calculated. Results: During the WU, Tcore was similar between conditions for both groups. During the ISP, a higher Tcore was found for SCI compared to NON-SCI (38.1 [0.3] vs 37.7 [0.3] °C: P = .036, d = 0.75), and the SCI group experienced a higher peak Tcore for INT compared with control (39.0 [0.4] vs 38.6 [0.6] °C; P = .004). Peak Tcore occurred later in the ISP for players with SCI (96 [5.8] vs 48 [2.7] min; P < .001). All players reported a higher thermal sensation and thermal comfort following INT (P < .001), with no differences between conditions throughout the ISP. No significant differences were found in wheelchair performance variables during the ISP between conditions (P ≥ .143). Conclusions: The high-INT WU increased thermal strain in the SCI group during the ISP, potentially due to increased metabolic heat production and impaired thermoregulation, while not impacting on repeated sprint performance. It may be advisable to limit high-INT bouts during a WU in players with SCI to mitigate issues related to hyperthermia in subsequent performance.

The authors are with the Peter Harrison Centre for Disability Sport, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom.

Goosey-Tolfrey (v.l.tolfrey@lboro.ac.uk) is corresponding author.
  • Collapse
  • Expand
  • 1.

    International Wheelchair Rugby Federation (IWRF). 2019. http://www.iwrf.com. Accessed September 1, 2019.

  • 2.

    Tweedy SM, Vanlandewijck YC. International Paralympic committee position stand-background and scientific principles of classification in Paralympic sport. Br J Sports Med. 2011;45(4):259269. PubMed ID: 19850575 doi:10.1136/bjsm.2009.065060

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Rhodes JM, Mason BS, Perrat B, Smith MJ, Malone LA, Goosey-Tolfrey VL. Activity profiles of elite wheelchair rugby players during competition. Int J Sports Physiol Perform. 2015;10(3):318324. PubMed ID: 25202822 doi:10.1123/ijspp.2014-0203

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Leicht CA, Bishop NC, Goosey-Tolfrey VL. Submaximal exercise responses in tetraplegic, paraplegic and non spinal cord injured elite wheelchair athletes. Scand J Med Sci Sport. 2012;22(6):729736. doi:10.1111/j.1600-0838.2011.01328.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Gee CM, Lacroix MA, West CR. A 20×20 m repeated sprint field test replicates the demands of wheelchair rugby. J Sci Med Sport. 2018;21(7):753757. PubMed ID: 29373205 doi:10.1016/j.jsams.2017.12.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Griggs KE, Stephenson BT, Price MJ, Goosey-Tolfrey VL. Heat-related issues and practical applications for Paralympic athletes at Tokyo 2020. Temperature. 2020;7(1):3757. doi:10.1080/23328940.2019.1617030

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Freund PR, Brengelmann GL, Rowell LB, Halar E. Attenuated skin blood flow response to hyperthermia in paraplegic men. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(4):11041109. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0021333757&partnerID=40&md5=8da5b05d674c868834026788333550e1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Aldous JWF, Chrismas BCR, Akubat I, Dascombe B, Abt G, Taylor L. Hot and hypoxic environments inhibit simulated soccer performance and exacerbate performance decrements when combined. Front Physiol. 2016;6:114. doi:10.3389/fphys.2015.00421

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Mohr M, Krustrup P, Nybo L, Nielsen JJ, Bangsbo J. Muscle temperature and sprint performance during soccer matches—beneficial effect of re-warm-up at half-time. Scand J Med Sci Sport. 2004;14(3):156162. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&amp;SrcAuth=mekentosj&amp;SrcApp=Papers&amp;DestLinkType=FullRecord&amp;DestApp=WOS&amp;KeyUT=000221451700005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Bishop D. Warm up I: potential mechanisms and the effects of passive warm up on exercise performance. Sports Med. 2003;33(6):439454. doi:10.2165/00007256-200333060-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Rhodes JM, Mason BS, Malone LA, Goosey-Tolfrey VL. Effect of team rank and player classification on activity profiles of elite wheelchair rugby players. J Sports Sci. 2015;33(19):20702078. PubMed ID: 25812720 doi:10.1080/02640414.2015.1028087

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Bishop D, Bonetti D, Spencer M. The effect of an intermittent, high-intensity warm-up on supramaximal kayak ergometer performance. J Sports Sci. 2003;21(1):1320. PubMed ID: 12587887 doi:10.1080/0264041031000070912

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Nilsson JE, Rosdahl HG. Contribution of leg-muscle forces to paddle force and kayak speed during maximal-effort flat-water paddling. Int J Sports Physiol Perform. 2016;11(1):2227. PubMed ID: 25849289 doi:10.1123/ijspp.2014-0030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Drust B, Rasmussen P, Mohr M, Nielsen B, Nybo L. Elevations in core and muscle temperature impairs repeated sprint performance. Acta Physiol Scand. 2005;183(2):181190. PubMed ID: 15676059 doi:10.1111/j.1365-201X.2004.01390.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Price MJ. Thermoregulation during exercise in individuals with spinal cord injuries. Sports Med. 2006;36(10):863879. doi:10.2165/00007256-200636100-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Westerblad H, Lee JA, Lannergren J, Allen DG. Cellular mechanisms of fatigue in skeletal muscle. Am J Physiol Physiol. 1991;261(2):C195C209. doi:10.1152/ajpcell.1991.261.2.C195

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Webborn N, Price MJJ, Castle PCC, Goosey-Tolfrey VLL. Effects of two cooling strategies on thermoregulatory responses of tetraplegic athletes during repeated intermittent exercise in the heat. J Appl Physiol. 2005;98(6):21012107. PubMed ID: 15677741 doi:10.1152/japplphysiol.00784.2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Griggs KE, Leicht CA, Price MJ, Goosey-Tolfrey VL. Thermoregulation during intermittent exercise in athletes with a spinal cord injury. Int J Sports Physiol Perform. 2015;10(4):469475. PubMed ID: 25365654 doi:10.1123/ijspp.2014-0361

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Rhodes J, Mason B, Perrat B, Smith M, Goosey-Tolfrey V. The validity and reliability of a novel indoor player tracking system for use within wheelchair court sports. J Sports Sci. 2014;32(17):16391647. PubMed ID: 24758599 doi:10.1080/02640414.2014.910608

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Griggs KE, Havenith G, Price MJ, Mason BS, Goosey-Tolfrey VL. Thermoregulatory responses during competitive wheelchair rugby match play. Int J Sports Med. 2017;38(3):177183. doi:10.1055/s-0042-121263

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Ramanathan NL. A new weighting system for mean surface temperature of the human body. J Appl Physiol. 1964;19(3):531533. doi:10.1152/jappl.1964.19.3.531

  • 22.

    de Klerk R, Velhorst V, Veeger DHEJ, van der Woude LHV, Vegter RJK. Physiological and biomechanical comparison of overground, treadmill, and ergometer handrim wheelchair propulsion in able-bodied subjects under standardized conditions. J Neuroeng Rehabil. 2020;17(1):111. doi:10.1186/s12984-020-00767-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Malcata RM, Hopkins WG. Variability of competitive performance of elite athletes: a systematic review. Sports Med. 2014;44(12):17631774. doi:10.1007/s40279-014-0239-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Winget CM, DeRoshia CW, Holley DC. Circadian rhythms and athletic performance. Med Sci Sports Exerc. 1985;17(5):498516. PubMed ID: 3906341 doi:10.1249/00005768-198510000-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Griggs KE, Havenith G, Paulson TA, Price MJ, Goosey-Tolfrey VL. Effects of cooling before and during simulated match play on thermoregulatory responses of athletes with tetraplegia. J Sci Med Sport. 2017;20(9):819824. PubMed ID: 28389216 doi:10.1016/j.jsams.2017.03.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Toner MM, Drolet LL, Pandolf KB. Perceptual and physiological responses during exercise in cool and cold water. Percept Mot Skills. 1986;62(1):211220. PubMed ID: 3960662 doi:10.2466/pms.1986.62.1.211

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Gagge AP, Stolwijk JAJ, Saltin B. Comfort and thermal sensations and associated physiological responses during exercise at various ambient temperatures. Environ Res. 1969;2(3):209229. PubMed ID: 5788908 doi:10.1016/0013-9351(69)90037-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988. doi:10.1007/bf00544941

    • Search Google Scholar
    • Export Citation
  • 29.

    Schlader ZJ, Simmons SE, Stannard SR, Mündel T. Skin temperature as a thermal controller of exercise intensity. Eur J Appl Physiol. 2011;111(8):16311639. PubMed ID: 21197543 doi:10.1007/s00421-010-1791-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Kingma BRM, Roijendijk LMM, Van Maanen L, Van Rijn H, Van Beurden MHPH. Time perception and timed decision task performance during passive heat stress. Temperature. 2021;8(1):5363. doi:10.1080/23328940.2020.1776925

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Nybo L, Rasmussen P, Sawka MN. Performance in the heat-physiological factors of importance for hyperthermia-induced fatigue. Compr Physiol. 2014;4(2):657689. PubMed ID: 24715563 doi:10.1002/cphy.c130012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Au JS, Kamijo YI, Goosey-Tolfrey VL, et al. Comparison between esophageal and intestinal temperature responses to upper-limb exercise in individuals with spinal cord injury. Spinal Cord. 2019;57:586593. PubMed ID: 30765840 doi:10.1038/s41393-019-0257-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Burnham R, Martin T, Stein R, Bell G, MacLean I, Steadward R. Skeletal muscle fibre type transformation following spinal cord injury. Spinal Cord. 1997;35(2):8691. PubMed ID: 9044514 doi:10.1038/sj.sc.3100364

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4164 770 47
Full Text Views 110 79 1
PDF Downloads 116 69 0