Starving Your Performance? Reduced Preexercise Hunger Increases Resistance Exercise Performance

in International Journal of Sports Physiology and Performance
Restricted access

Background: Preexercise food intake enhances exercise performance due, in part, to the provision of exogenous carbohydrate. Food intake also suppresses hunger, but the specific influence of hunger on exercise performance has not been investigated. This study aimed to manipulate hunger by altering preexercise meal viscosity to examine whether hunger influences performance. Methods: Sixteen resistance-trained males completed 2 experimental trials ingesting either high viscosity semisolid (SEM) and low viscosity liquid (LIQ) carbohydrate-containing meals 2 hours before performing 4 sets of back squat (85 [22] kg) and bench press (68 [13] kg) to failure at 90% 10-repetition maximum. Subjective hunger/fullness as well as plasma concentrations of glucose, insulin, ghrelin, and peptide tyrosine–tyrosine were measured before and periodically after the meal. Repetitions completed in sets were used to determine exercise performance. Results: Hunger was lower, and fullness was greater during SEM compared with LIQ immediately before and during exercise (P < .05). Total repetitions completed for back squat were approximately 10% greater in SEM (SEM 57 [9]; LIQ 51 [7] repetitions; P = .001) with no difference in bench press repetitions (SEM 48 [11]; LIQ 48 [10] repetitions; P = .621). Postprandial glucose concentrations were greater during LIQ (12% increase in peak glucose) but were similar throughout exercise. Conclusion: This study demonstrates that exercise performance in back squat was increased in the SEM trial concomitant to a reduction in hunger. Therefore, this study provides novel data that suggest that exercise performance might be influenced by hunger, at least for resistance exercise.

Naharudin and Yusof are with the Centre for Sports and Exercise Sciences, University of Malaya, Kuala Lumpur, Malaysia. Clayton is with the School of Science & Technology, Nottingham Trent University, Nottingham, United Kingdom. James is with the School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom.

James (L.James@lboro.ac.uk) is corresponding author.
  • 1.

    Clayton DJ, Barutcu A, Machin C, Stensel DJ, James LJ. Effect of breakfast omission on energy intake and evening exercise performance. Med Sci Sports Exerc. 2015;47(12):26452652. doi:10.1249/MSS.0000000000000702

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Lambert CP, Flynn MG, Boone JB, Michaud TJ, Rodriguez-Zayas J. Effects of carbohydrate feeding on multiple-bout resistance exercise. J Strength Cond Res. 1991;5(4):192197. doi:10.1519/00124278-199111000-00004

    • Search Google Scholar
    • Export Citation
  • 3.

    Naharudin MN, Yusof A, Shaw H, Stockton M, Clayton DJ, James LJ. Breakfast omission reduces subsequent resistance exercise performance. J Strength Cond Res. 2019;33(7):17661772. doi:10.1519/JSC.0000000000003054

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Naharudin MN, Yusof A. The effect of 10 days of intermittent fasting on Wingate anaerobic power and prolonged high-intensity time-to-exhaustion cycling performance. Eur J Sport Sci. 2018;18(5):667676. doi:10.1080/17461391.2018.1438520

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Naharudin MN, Adams J, Richardson H, et al. Viscous placebo and carbohydrate breakfasts similarly decrease appetite and increase resistance exercise performance compared with a control breakfast in trained males. Br J Nutr . 2020;124(2):232240. doi:10.1017/s0007114520001002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Mears SA, Dickinson K, Bergin-Taylor K, Dee R, Kay J, James LJ. Perception of breakfast ingestion enhances high intensity cycling performance. Int J Sports Physiol Perform. 2018;13(4):504509. doi:10.1123/ijspp.2017-0318

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Duhamel TA, Perco JG, Green HJ. Manipulation of dietary carbohydrates after prolonged effort modifies muscle sarcoplasmic reticulum responses in exercising males. Am J Physiol Regul Integr Comp Physiol. 2006;291(4):R1100R1110. doi:10.1152/ajpregu.00858.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Nilsson LH, Hultman E. Liver glycogen in manthe effect of total starvation or a carbohydrate-poor diet followed by carbohydrate refeeding. Scand J Clin Lab Invest. 1973;32(4):325330. doi:10.3109/00365517309084355

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Chryssanthopoulos C, Williams C, Nowitz A, Bogdanis G. Skeletal muscle glycogen concentration and metabolic responses following a high glycaemic carbohydrate breakfast. J Sports Sci. 2004;22(11–12):10651071. doi:10.1080/02640410410001730007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Fairchild TJ, Dillon P, Curtis C, Dempsey AR. Glucose ingestion does not improve maximal isokinetic force. J Strength Cond Res. 2016;30(1):194199. doi:10.1519/JSC.0000000000001057

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Haff GG, Koch AJ, Potteiger JA, et al. Carbohydrate supplementation attenuates muscle glycogen loss during acute bouts of resistance exercise. Int J Sport Nutr Exerc Metab. 2000;10(3):326339. doi:10.1123/ijsnem.10.3.326

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Goulet EDB. Effect of exercise-induced dehydration on time-trial exercise performance: a meta-analysis. Br J Sports Med. 2011;45(14):11491156. doi:10.1136/bjsm.2010.077966

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Sawka MN, Montain SJ. Fluid and electrolyte supplementation for exercise heat stress. Am J Clin Nutr. 2000;72(suppl 2):564S572S. doi:10.1093/ajcn/72.2.564S

  • 14.

    Mauger AR, Taylor L, Harding C, Wright B, Foster J, Castle PC. Acute acetaminophen (paracetamol) ingestion improves time to exhaustion during exercise in the heat. Exp Physiol. 2014;99(1):164171. doi:10.1113/expphysiol.2013.075275

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Berry MK, Russo A, Wishart JM, Tonkin A, Horowitz M, Jones KL. Effect of solid meal on gastric emptying of, and glycemic and cardiovascular responses to, liquid glucose in older subjects. Am J Physiol Gastrointest Liver Physiol. 2003;284(4):G655G662. doi:10.1152/ajpgi.00163.2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Martens MJI, Lemmens SGT, Born JM, Westerterp-Plantenga MS. Satiating capacity and post-prandial relationships between appetite parameters and gut-peptide concentrations with solid and liquefied carbohydrate. PLoS One. 2012;7(7):e42110. doi:10.1371/journal.pone.0042110

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175191.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Flint A, Raben A, Blundell JE, Astrup A. Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int J Obes. 2000;24(1):3848. doi:10.1038/sj.ijo.0801083

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Arnaoutis G, Kavouras SA, Christaki I, Sidossis LS. Water ingestion improves performance compared with mouth rinse in dehydrated subjects. Med Sci Sports Exerc. 2012;44(1):175179. doi:10.1249/MSS.0b013e3182285776

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Nguyen QAT, Hillis D, Sayako K, et al. Coadaptation of the chemosensory system with voluntary exercise behavior in mice. PLoS One. 2020;15(11):e0241758. doi:10.1371/journal.pone.0241758

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Hokken R, Laugesen S, Aagaard P, et al. Subcellular localization- and fibre type-dependent utilization of muscle glycogen during heavy resistance exercise in elite power and Olympic weightlifters. Acta Physiol. 2021;231(2):e13561. doi:10.1111/apha.13561

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Johnson MA, Williams NC, Graham AW, Ingram LAL, Cooper SB, Sharpe GR. Effects of prior upper body exercise on the 3-min all-out cycling test in men. Med Sci Sports Exerc. 2020;52(11):24022411. doi:10.1249/MSS.0000000000002395

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Rebello CJ, O’Neil CE, Greenway FL. Dietary fiber and satiety: the effects of oats on satiety. Nutr Rev. 2016;74(2):131147. doi:10.1093/nutrit/nuv063

  • 24.

    Flood-Obbagy JE, Rolls BJ. The effect of fruit in different forms on energy intake and satiety at a meal. Appetite. 2009;52(2):416422. doi:10.1016/j.appet.2008.12.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Brennan CS. Dietary fibre, glycaemic response, and diabetes. Mol Nutr Food Res. 2005;49(6):560570. doi:10.1002/mnfr.200500025

  • 26.

    Sakata I, Sakai T. Ghrelin cells in the gastrointestinal tract. Int J Pept. 2010;2010:945056 . doi:10.1155/2010/945056

  • 27.

    Wu CL, Williams C. A low glycemic index meal before exercise improves endurance running capacity in men. Int J Sport Nutr Exerc Metab. 2006;16(5):510527. doi:10.1123/ijsnem.16.5.510

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Burdon CA, Spronk I, Cheng HL, O’Connor HT. Effect of glycemic index of a pre-exercise meal on endurance exercise performance: a systematic review and meta-analysis. Sports Med. 2017;47(6):10871101. doi:10.1007/s40279-016-0632-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Anderson GH, Woodend D. Effect of glycemic carbohydrates on short-term satiety and food intake. Nutr Rev. 2003;61(5, pt 2):S17S26. doi:10.1301/nr.2003.may.s17-s26

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1304 1304 297
Full Text Views 18 18 1
PDF Downloads 27 27 0