Purpose: To describe the record power profile of professional female cyclists and to assess potential differences based on the type of rider. Methods: Power output data (32,028 files containing both training and competition sessions recorded) in 44 female professional cyclists during 1–6 years were analyzed. Cyclists were categorized as all-rounders, time trialists, climbers, or sprinters. The record power profile was calculated using the mean maximal power output (MMP) values attained by each cyclist for different-effort durations (5 s to 60 min) expressed in relative (W·kg−1), as well as absolute, power output (W). Results: Participants’ MMP averaged 15.3 (1.8) W·kg−1 for 5 seconds, 8.4 (0.8) W·kg−1 for 1 minute, 5.2 (0.5) W·kg−1 for 10 minutes, and 4.2 (0.4) W·kg−1 for 60 minutes. For short-duration efforts (5–30 s), sprinters attained the highest MMP results, with significantly higher relative (Hedges g = 1.40–2.31) or absolute (g = 4.48–8.06) values than the remainder of categories or climbers only, respectively. Time trialists attained the highest MMP for longer efforts, with higher relative values than both all-rounders and climbers when comparing efforts lasting 10 to 60 minutes (P < .05, g = 1.21–1.54). Conclusions: In professional female cyclists, the record power profile substantially differs based on the specific category of the rider. These findings provide unique insights into the physical capacities of female professional cyclists, as well as a benchmark for coaches and scientists aiming to identify talent in female cycling.