Modeling Professional Rugby Union Peak Intensity–Duration Relationships Using a Power Law

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Samuel T. Howe
Search for other papers by Samuel T. Howe in
Current site
Google Scholar
PubMed
Close
,
Robert J. Aughey
Search for other papers by Robert J. Aughey in
Current site
Google Scholar
PubMed
Close
,
William G. Hopkins
Search for other papers by William G. Hopkins in
Current site
Google Scholar
PubMed
Close
, and
Andrew M. Stewart
Search for other papers by Andrew M. Stewart in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: Can power law models accurately predict the peak intensities of rugby competition as a function of time? Methods: Match movement data were collected from 30 elite and 30 subelite rugby union athletes across competitive seasons, using wearable Global Navigation Satellite Systems and accelerometers. Each athlete’s peak rolling mean value of each measure (mean speed, metabolic power, and PlayerLoad) for 8 durations between 5 seconds and 10 minutes was predicted by the duration with 4 power law (log–log) models, one for forwards and backs in each half of a typical match. Results: The log of peak exercise intensity and exercise duration (5–600 s) displayed strong linear relationships (R2 = .967–.993) across all 3 measures. Rugby backs had greater predicted intensities for shorter durations than forwards, but their intensities declined at a steeper rate as duration increased. Random prediction errors for mean speed, metabolic power, and PlayerLoad were 5% to 6%, 7% to 9%, and 8% to 10% (moderate to large), respectively, for elite players. Systematic prediction errors across the range of durations were trivial to small for elite players, underestimating intensities for shorter (5–10 s) and longer (300–600 s) durations by 2% to 4% and overestimating 20- to 120-second intensities by 2% to 3%. Random and systematic errors were slightly greater for subelites compared to elites, with ranges of 4% to 12% and 2% to 5%, respectively. Conclusions: Peak intensities of professional rugby union matches can be predicted with adequate precision (trivial to small errors) for prescribing training drills of a given duration, irrespective of playing position, match half, level of competition, or measure of exercise intensity. However, practitioners should be aware of the substantial (moderate to large) prediction errors at the level of the individual player.

The authors are with the Inst for Health and Sport, Victoria University, Melbourne, VIC, Australia.

Howe (Samuel.howe@vu.edu.au) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Lacome M, Simpson BM, Cholley Y, Lambert P, Buchheit M. Small-sided games in elite soccer: does one size fit all? Int J Sports Physiol Perform. 2018;13(5):568576. PubMed ID: 28714774 doi:10.1123/ijspp.2017-0214

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Delaney JA, Thornton HR, Rowell AE, Dascombe BJ, Aughey RJ, Duthie GM. Modelling the decrement in running intensity within professional soccer players. Sci Med Footb. 2017;2(2):8692. doi:10.1080/24733938.2017.1383623

    • Search Google Scholar
    • Export Citation
  • 3.

    Duthie GM, Thornton HR, Delaney JA, McMahon JT, Benton DT. Relationship between physical performance testing results and peak running intensity during professional rugby league match play. J Str Cond Res. 2017;34(12):35063513. doi:10.1519/JSC.0000000000002273

    • Search Google Scholar
    • Export Citation
  • 4.

    Duthie GM, Thornton HR, Delaney JA, Connolly DR, Serpiello FR. Running intensities in elite youth soccer by age and position. J Str Cond Res. 2018;32(10):29182924. doi:10.1519/JSC.0000000000002728

    • Search Google Scholar
    • Export Citation
  • 5.

    Katz L, Katz JS. Fractal (power law) analysis of athletic performance. Res Sports Med. 1994;5(2):95105. doi:10.1080/15438629409512005

    • Search Google Scholar
    • Export Citation
  • 6.

    Higgins JP. Nonlinear systems in medicine. Yale J Biol Med. 2002;75(5–6):247260. PubMed ID: 14580107

  • 7.

    White EP, Enquist BJ, Green JL. On estimating the exponent of power-law frequency distributions. Ecology. 2008;89(4):905912. PubMed ID: 18481513 doi:10.1890/07-1288.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Varley MC, Elias GP, Aughey RJ. Current match-analysis techniques’ underestimation of intense periods of high-velocity running. Int J Sports Physiol Perform. 2012;7(2):183185. PubMed ID: 22634968 doi:10.1123/ijspp.7.2.183

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Box GEP. Science and statistics. J Am Statist Assoc. 1976;71(356):791799. doi:10.1080/01621459.1976.10480949

  • 10.

    Faude O, Koch T, Meyer T. Straight sprinting is the most frequent action in goal situations in professional football. J Sports Sci. 2012;30(7):625631. PubMed ID: 22394328 doi:10.1080/02640414.2012.665940

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Gabbett T, Gahan C. Repeated high-intensity effort activity in relation to tries scored and conceded during rugby league match-play. Int J Sports Physiol Perform. 2016;11(4):530534. PubMed ID: 26389863 doi:10.1123/ijspp.2015-0266

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Howe ST, Aughey RJ, Hopkins WG, Cavanagh BP, Stewart AM. Sensitivity, reliability and construct validity of GPS and accelerometers for quantifying peak periods of rugby competition. PLoS One. 2020;15(7):e0236024. doi:10.1371/journal.pone.0236024

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Howe ST, Aughey RJ, Hopkins WG, Cavanagh BP, Stewart AM. Quantifying important differences in athlete movement during collision-based team sports: accelerometers outperform Global Positioning Systems. Paper presented at: 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), Kauai, HI, 2017.

    • Search Google Scholar
    • Export Citation
  • 14.

    Buchheit M, Al Haddad H, Simpson BM, et al. Monitoring accelerations with GPS in football: time to slow down? Int J Sports Physiol Perform. 2014;9(3):442445. PubMed ID: 23916989 doi:10.1123/ijspp.2013-0187

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Townshend AD, Worringham CJ, Stewart IB. Assessment of speed and position during human locomotion using nondifferential GPS. Med Sci Sports Exerc. 2008;40(1):124132. PubMed ID: 18091013 doi:10.1249/mss.0b013e3181590bc2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Varley MC, Jaspers A, Helsen WF, Malone JJ. Methodological considerations when quantifying high-intensity efforts in team sport using global positioning system technology. Int J Sports Physiol Perform. 2017;12(8):10591068. PubMed ID: 28051343 doi:10.1123/ijspp.2016-0534

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Delaney JA, Scott TJ, Thornton HR, et al. Establishing duration-specific running intensities from match-play analysis in rugby league. Int J Sports Physiol Perform. 2015;10(6):725731. PubMed ID: 26023738 doi:10.1123/ijspp.2015-0092

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Cunningham DJ, Shearer DA, Carter N, et al. Assessing worst case scenarios in movement demands derived from global positioning systems during international rugby union matches: rolling averages versus fixed length epochs. PLoS One. 2018;13(4):e0195197. doi:10.1371/journal.pone.0195197

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Weaving D, Sawczuk T, Williams S, et al. The peak duration-specific locomotor demands and concurrent collision frequencies of European Super League rugby. J Sports Sci. 2018;37(3):322330. PubMed ID: 30024322 doi:10.1080/02640414.2018.1500425

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Aughey RJ. Applications of GPS technologies to field sports. Int J Sports Physiol Perform. 2011;6(3):295310. PubMed ID: 21911856 doi:10.1123/ijspp.6.3.295

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Boyd LJ, Ball K, Aughey RJ. The reliability of MinimaxX accelerometers for measuring physical activity in Australian football. Int J Sports Physiol Perform. 2011;6(3):311321. PubMed ID: 21911857 doi:10.1123/ijspp.6.3.311

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Osgnach C, Poser S, Bernardini R, Rinaldo R, di Prampero PE. Energy cost and metabolic power in elite soccer: a new match analysis approach. Med Sci Sports Exerc. 2010;42(1):170178. PubMed ID: 20010116 doi:10.1249/MSS.0b013e3181ae5cfd

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):312. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Kennelly AE. An approximate law of fatigue in the speeds of racing animals. Paper presented at: Proceedings of the American Academy of Arts and Sciences, Boston, MA, 1906.

    • Search Google Scholar
    • Export Citation
  • 25.

    Katz JS, Katz L. Power laws and athletic performance. J Sports Sci. 1999;17(6):467476. PubMed ID: 10404495 doi:10.1080/026404199365777

  • 26.

    Smith TB, Hopkins WG. Variability and predictability of finals times of elite rowers. Med Sci Sports Exerc. 2011;43(11):21552160. PubMed ID: 21502896 doi:10.1249/MSS.0b013e31821d3f8e

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Ward-Smith A. A mathematical theory of running, based on the first law of thermodynamics, and its application to the performance of world-class athletes. J Biomech. 1985;18(5):337349. PubMed ID: 4008504 doi:10.1016/0021-9290(85)90289-1

    • Search Google Scholar
    • Export Citation
  • 28.

    Péronnet F, Thibault G. Mathematical analysis of running performance and world running records. J Appl Physiol. 1989;67(1):453465. PubMed ID: 2759974 doi:10.1152/jappl.1989.67.1.453

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Duthie G, Pyne D, Hooper S. Applied physiology and game analysis of rugby union. Sports Med. 2003;33(13):973991. PubMed ID: 14606925 doi:10.2165/00007256-200333130-00003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Quarrie KL, Hopkins WG, Anthony MJ, Gill ND. Positional demands of international rugby union: evaluation of player actions and movements. J Sci Med Sport. 2013;16(4):353359. PubMed ID: 22975233 doi:10.1016/j.jsams.2012.08.005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Trappe S, Luden N, Minchev K, Raue U, Jemiolo B, Trappe TA. Skeletal muscle signature of a champion sprint runner. J Appl Physiol. 2015;118(12):14601466. PubMed ID: 25749440 doi:10.1152/japplphysiol.00037.2015

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2939 2524 22
Full Text Views 41 28 1
PDF Downloads 48 26 2