The Dynamic Exertion Test for Sport-Related Concussion: A Comparison of Athletes at Return-to-Play and Healthy Controls

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Victoria Kochick
Search for other papers by Victoria Kochick in
Current site
Google Scholar
PubMed
Close
,
Aaron M. Sinnott
Search for other papers by Aaron M. Sinnott in
Current site
Google Scholar
PubMed
Close
,
Shawn R. Eagle
Search for other papers by Shawn R. Eagle in
Current site
Google Scholar
PubMed
Close
,
Indira R. Bricker
Search for other papers by Indira R. Bricker in
Current site
Google Scholar
PubMed
Close
,
Michael W. Collins
Search for other papers by Michael W. Collins in
Current site
Google Scholar
PubMed
Close
,
Anne Mucha
Search for other papers by Anne Mucha in
Current site
Google Scholar
PubMed
Close
,
Christopher Connaboy
Search for other papers by Christopher Connaboy in
Current site
Google Scholar
PubMed
Close
, and
Anthony P. Kontos
Search for other papers by Anthony P. Kontos in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To describe the Dynamic Exertion Test (EXiT) by comparing physiological, performance, and clinical outcomes between athletes medically cleared following sport-related concussion (SRC) and healthy controls. Methods: One hundred four (female = 41, 39.4%) participants (14–21 y of age) including 52 medically cleared for return to play at 21.48 (15.40) days following SRC and 52 healthy athletes completed the EXiT involving (1) 12-minute aerobic component and (2) 18-minute dynamic component including 2 functional movement and 5 change-of-direction (COD) tasks. Physiological (heart rate and blood pressure), clinical (endorsed symptoms and rating of perceived exertion), and performance (COD-task completion time and errors) outcomes were collected throughout EXiT. Participants also completed the Postconcussion Symptom Scale and vestibular/ocular motor screening before EXiT. Independent-samples t tests were used to compare groups on resting heart rate and blood pressure, COD-task completion time, and Mann–Whitney U tests on Postconcussion Symptom Scale, vestibular/ocular motor screening, and EXiT symptoms, rating of perceived exertion, and errors. Results: COD-task completion time and resting systolic blood pressure and heart rate were similar between groups (P > .05). SRC reported greater rating of perceived exertion during the aerobic component (P < .05) and lower total dizziness (P = .003) and total symptoms (P = .021) during EXiT and had lower near point of convergence distance (P < .001) and total symptoms (P = .007) for vestibular/ocular motor screening than healthy athletes. Conclusion: Physiological, performance, and clinical EXiT outcomes were equivocal between athletes at medical clearance following SRC and healthy controls. The multidomain EXiT may help to inform safe return-to-play decision making post-SRC.

Kochick and Mucha are with the Centers for Rehabilitation Services, Dept of Physical Therapy; Sinnott, Eagle, Collins, and Kontos, the UPMC Sports Medicine Concussion Program, Dept of Orthopaedic Surgery; and Sinnott, Bricker, and Connaboy, the Neuromuscular Research Laboratory-Warrior Human Performance Research Center, Dept of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA.

Kontos (akontos@pitt.edu) is corresponding author.

Supplementary Materials

    • Supplementary Material S1 (PDF 330 KB)
    • Supplementary Material S2 (PDF 213 KB)
    • Supplementary Material S3 (PDF 194 KB)
  • Collapse
  • Expand
  • 1.

    McCrory P, Meeuwisse W, Dvorak J, et al. Consensus statement on concussion in sport—the 5(th) international conference on concussion in sport held in Berlin, October 2016. Br J Sports Med. 2017;51(11):838847. PubMed ID: 28446457

    • Search Google Scholar
    • Export Citation
  • 2.

    Harmon KG, Clugston JR, Dec K, et al. American medical society for sports medicine position statement on concussion in sport. Clin J Sport Med. 2019;29(2):87100. PubMed ID: 30730386 doi:10.1097/JSM.0000000000000720

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    McDonald T, Burghart MA, Nazir N. Underreporting of concussions and concussion-like symptoms in female high school athletes. J Trauma Nurs. 2016;23(5):241246. PubMed ID: 27618372 doi:10.1097/JTN.0000000000000227

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Kemp S, Patricios J, Raftery M. Is the content and duration of the graduated return to play protocol after concussion demanding enough? A challenge for Berlin 2016. Br J Sports Med. 2016;50(11):644645. PubMed ID: 26932676 doi:10.1136/bjsports-2015-095780

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Haarbauer-Krupa JK, Comstock RD, Lionbarger M, Hirsch S, Kavee A, Lowe B. Healthcare professional involvement and RTP compliance in high school athletes with concussion. Brain Inj. 2018;32(11):13371344. PubMed ID: 29953252 doi:10.1080/02699052.2018.1482426

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Stone S, Lee B, Garrison JC, Blueitt D, Creed K. Sex differences in time to return-to-play progression after sport-related concussion. Sports Health. 2017;9(1):4144. PubMed ID: 27697890 doi:10.1177/1941738116672184

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Clark R, Stanfill AG. A systematic review of barriers and facilitators for concussion reporting behavior among student athletes. J Trauma Nurs. 2019;26(6):297311. PubMed ID: 31714490 doi:10.1097/JTN.0000000000000468

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Haran HP, Bressan S, Oakley E, Davis GA, Anderson V, Babl FE. On-field management and return-to-play in sports-related concussion in children: are children managed appropriately? J Sci Med Sport. 2016;19(3):194199. PubMed ID: 25772997 doi:10.1016/j.jsams.2015.02.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Leddy JJ, Wilber CG, Willer BS. Active recovery from concussion. Curr Opin Neurol. 2018;31(6):681686. PubMed ID: 30382949 doi:10.1097/WCO.0000000000000611

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Kontos AP, Collins MW. Concussion: A Clinical Profile Approach to Assessment and Treatment. 1st ed. Washington, DC: American Psychological Association; 2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Popovich M, Almeida A, Sas A, et al. Symptom provocation patterns during supervised exercise in adolescent athletes with concussion. Neurology. 2019;93(14)(suppl 1):S28S29.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Ratka J, Cheever K, Mansell JL, Tierney RT. The effect of an interval fatigue protocol on vestibular/ocular motor screening (VOMS) performance. Brain Inj. 2020;34(1):110114. PubMed ID: 31645131 doi:10.1080/02699052.2019.1682194

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Popovich M, Almeida A, Lorincz M, et al. Does exercise increase vestibular and ocular motor symptom detection after sport-related concussion? J Neurol Phys Ther. 2021;45(3):214220. PubMed ID: 33782346 doi:10.1097/NPT.0000000000000356

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Moran RN, Murray NG, Esco MR, Dobbs W, McAllister-Deitrick J. Effects of exercise on symptoms, vestibular/ocular motor screening and postural stability in a college-aged sample. Concussion. 2020;5(2):CNC73. PubMed ID: 32509325 doi:10.2217/cnc-2020-0003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Marshall CM, Chan N, Tran P, DeMatteo C. The use of an intensive physical exertion test as a final return to play measure in concussed athletes: a prospective cohort. Phys Sportsmed. 2019;47(2):158166. PubMed ID: 30372657 doi:10.1080/00913847.2018.1542258

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175191. PubMed ID: 17695343 doi:10.3758/BF03193146

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Kaminsky LA, Arena R, Myers J. Reference standards for cardiorespiratory fitness measured with cardiopulmonary exercise testing: data from the fitness registry and the importance of exercise national database. Mayo Clin Proc. 2015;90(11):15151523.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Garber CE, Blissmer B, Deschenes MR, et al. American college of sports medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):13341359. PubMed ID: 21694556 doi:10.1249/MSS.0b013e318213fefb

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Sports Med. 2013;43(5):313338. PubMed ID: 23539308 doi:10.1007/s40279-013-0029-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Pescatello LS, American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription. Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Wilkins Health; 2014.

    • Search Google Scholar
    • Export Citation
  • 21.

    Sinnott AM, Kochick V, Raub IR, et al. Test-retest reliability of the dynamic exertion test (EXiT) among healthy athletes. Paper presented at: American Physical Therapy Association-Combined Sections Meeting 2020, February 12–15, 2020; Denver, CO.

    • Search Google Scholar
    • Export Citation
  • 22.

    Nuttall FQ. Body mass index: obesity, BMI, and health: a critical review. Nutr Today. 2015;50(3):117128. PubMed ID: 27340299 doi:10.1097/NT.0000000000000092

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Lovell MR, Iverson GL, Collins MW, et al. Measurement of symptoms following sports-related concussion: reliability and normative data for the post-concussion scale. Appl Neuropsychol. 2006;13(3):166174. PubMed ID: 17361669 doi:10.1207/s15324826an1303_4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Mucha A, Collins MW, Elbin RJ, et al. A brief vestibular/ocular motor screening (VOMS) assessment to evaluate concussions: preliminary findings. Am J Sports Med. 2014;42(10):24792486. PubMed ID: 25106780 doi:10.1177/0363546514543775

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Rice SG, American Academy of Pediatrics Council on Sports M, Fitness. Medical conditions affecting sports participation. Pediatrics. 2008;121(4):841848.

  • 26.

    Lloyd R, Read P, Oliver J, Meyers R, Nimphius S, Jeffreys I. Considerations for the development of agility during childhood and adolescence. Strength Cond J. 2013;35(3):211. doi:10.1519/SSC.0b013e31827ab08c

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Young W, Rayner R, Talpey S. It’s time to change direction on agility research: a call to action. Sports Med. 2021;7(1):12.

  • 28.

    Shepard J, Dawes J, Jeffreys I, Spiteri T, Nimphius S. Broadening the view of agility: a scientific review of the literature. J Aust Strength Cond. 2014;22:630.

    • Search Google Scholar
    • Export Citation
  • 29.

    Gall B, Parkhouse WS, Goodman D. Exercise following a sport induced concussion. Br J Sports Med. 2004;38(6):773777. PubMed ID: 15562179 doi:10.1136/bjsm.2003.009530

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Coyle EF, Martin WH, Sinacore DR, Joyner MJ, Hagberg JM, Holloszy JO. Time course of loss of adaptations after stopping prolonged intense endurance training. J Appl Physiol. 1984;57(6):18571864. PubMed ID: 6511559 doi:10.1152/jappl.1984.57.6.1857

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Kozlowski KF, Graham J, Leddy JJ, Devinney-Boymel L, Willer BS. Exercise intolerance in individuals with postconcussion syndrome. J Athl Train. 2013;48(5):627635. PubMed ID: 23952041 doi:10.4085/1062-6050-48.5.02

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    McCrea M, Broglio S, McAllister T, et al. Return to play and risk of repeat concussion in collegiate football players: comparative analysis from the NCAA concussion study (1999–2001) and CARE consortium (2014–2017). Br J Sports Med. 2020;54(2):102109. PubMed ID: 31036562 doi:10.1136/bjsports-2019-100579

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Leddy JJ, Baker JG, Kozlowski K, Bisson L, Willer B. Reliability of a graded exercise test for assessing recovery from concussion. Clin J Sport Med. 2011;21(2):8994. PubMed ID: 21358497 doi:10.1097/JSM.0b013e3181fdc721

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Orr R, Bogg T, Fyffe A, Lam LT, Browne GJ. Graded exercise testing predicts recovery trajectory of concussion in children and adolescents. Clin J Sport Med. 2018;31(1):2330.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4286 2164 85
Full Text Views 89 47 1
PDF Downloads 157 84 2