Effect of Acetaminophen on Endurance Cycling Performance in Trained Triathletes in Hot and Humid Conditions

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Gyan A. Wijekulasuriya
Search for other papers by Gyan A. Wijekulasuriya in
Current site
Google Scholar
PubMed
Close
,
Vernon G. Coffey
Search for other papers by Vernon G. Coffey in
Current site
Google Scholar
PubMed
Close
,
Luke Badham
Search for other papers by Luke Badham in
Current site
Google Scholar
PubMed
Close
,
Fergus O’Connor
Search for other papers by Fergus O’Connor in
Current site
Google Scholar
PubMed
Close
,
Avish P. Sharma
Search for other papers by Avish P. Sharma in
Current site
Google Scholar
PubMed
Close
, and
Gregory R. Cox
Search for other papers by Gregory R. Cox in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: The effect of acetaminophen (ACT, also known as paracetamol) on endurance performance in hot and humid conditions has been shown previously in recreationally active populations. The aim of this study was to determine the effect of ACT on physiological and perceptual variables during steady-state and time-trial cycling performance of trained triathletes in hot and humid conditions. Methods: In a randomized, double-blind crossover design, 11 triathletes completed ∼60 minutes steady-state cycling at 63% peak power output followed by a time trial (7 kJ·kg body mass−1, ∼30 min) in hot and humid conditions (∼30°C, ∼69% relative humidity) 60 minutes after consuming either 20 mg·kg body mass−1 ACT or a color-matched placebo. Time-trial completion time, gastrointestinal temperature, skin temperature, thermal sensation, thermal comfort, rating of perceived exertion, and fluid balance were recorded throughout each session. Results: There was no difference in performance in the ACT trial compared with placebo (P = .086, d = 0.57), nor were there differences in gastrointestinal and skin temperature, thermal sensation and comfort, or fluid balance between trials. Conclusion: In conclusion, there was no effect of ACT (20 mg·kg body mass−1) ingestion on physiology, perception, and performance of trained triathletes in hot and humid conditions, and existing precooling and percooling strategies appear to be more appropriate for endurance cycling performance in the heat.

Wijekulasuriya, Coffey, Badham, O’Connor, and Cox are with the Bond Inst of Health and Sport and Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia. Sharma and Cox are with Triathlon Australia, QLD, Australia. Sharma is also with Griffith Sports Physiology and Performance, School of Allied Health Sciences, Griffith University, QLD, Australia.

Cox (gcox@bond.edu.au) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Galloway SD, Maughan RJ. Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sports Exerc. 1997;29(9):1240. PubMed ID: 9309637 doi:10.1097/00005768-199709000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Peiffer JJ, Abbiss CR. Influence of environmental temperature on 40 km cycling time-trial performance. Int J Sports Physiol Perform. 2011;6(2):208220. PubMed ID: 21725106 doi:10.1123/ijspp.6.2.208

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Trangmar S, González-Alonso J. Heat, hydration and the human brain, heart and skeletal muscles. Sports Med. 2019;49(suppl 1):6985. doi:10.1007/s40279-018-1033-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Alhadad SB, Tan PMS, Lee JKW. Efficacy of heat mitigation strategies on core temperature and endurance exercise: a meta-analysis. Front Physiol. 2019;10(1):71. doi:10.3389/fphys.2019.00071

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Racinais S, Alonso JM, Coutts AJ, et al. Consensus recommendations on training and competing in the heat. Scand J Med Sci Sports. 2015;25(suppl 1):619. doi:10.1111/sms.12467

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bongers CCWG, Thijssen DHJ, Veltmeijer MTW, Hopman MTE, Eijsvogels TMH. Precooling and percooling (cooling during exercise) both improve performance in the heat: a meta-analytical review. Br J Sports Med. 2015;49(6):377. PubMed ID: 24747298 doi:10.1136/bjsports-2013-092928

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Racinais S, Ihsan M, Taylor L, et al. Hydration and cooling in elite athletes: relationship with performance, body mass loss and body temperatures during the Doha 2019 IAAF World Athletics Championships. Br J Sports Med. 2021;55(23):13351341. PubMed ID: 33579722 doi:10.1136/bjsports-2020-103613

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Ross MLR, Garvican LA, Jeacocke NA, et al. Novel precooling strategy enhances time trial cycling in the heat. Med Sci Sports Exerc. 2011;43(1):123133. PubMed ID: 20508537 doi:10.1249/MSS.0b013e3181e93210

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Ross M, Abbiss C, Laursen P, Martin D, Burke L. Precooling methods and their effects on athletic performance: a systematic review and practical applications. Sports Med. 2013;43(3):207225. doi:10.1007/s40279-012-0014-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Skein M, Duffield R, Cannon J, Marino FE. Self-paced intermittent-sprint performance and pacing strategies following respective pre-cooling and heating. Eur J Appl Physiol. 2012;112(1):253266. PubMed ID: 21537928 doi:10.1007/s00421-011-1972-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Wilson TE, Johnson SC, Petajan JH, et al. Thermal regulatory responses to submaximal cycling following lower-body cooling in humans. Eur J Appl Physiol. 2002;88(1):6775. doi:10.1007/s00421-002-0696-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Paulose-Ram R, Hirsch R, Dillon C, Losonczy K, Cooper M, Ostchega Y. Prescription and non-prescription analgesic use among the US adult population: results from the third National health and nutrition examination survey (NHANES III). Pharmacoepidemiol Drug Saf. 2003;12(4):315326. PubMed ID: 12812012 doi:10.1002/pds.755

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Tscholl PM, Vaso M, Weber A, Dvorak J. High prevalence of medication use in professional football tournaments including the World Cups between 2002 and 2014: a narrative review with a focus on NSAIDs. Br J Sports Med. 2015;49(9):580582. doi:10.1136/bjsports-2015-094784

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Küster M, Renner B, Oppel P, Niederweis U, Brune K. Consumption of analgesics before a marathon and the incidence of cardiovascular, gastrointestinal and renal problems: a cohort study. BMJ Open. 2013;3(4):e002090. PubMed ID: 23604350 doi:10.1136/bmjopen-2012-002090

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Mauger A, Taylor L, Harding C, Wright B, Foster J, Castle PC. Acute acetaminophen (paracetamol) ingestion improves time to exhaustion during exercise in the heat. Exp Physiol. 2014;99(1):164171. PubMed ID: 24058189 doi:10.1113/expphysiol.2013.075275

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Coombs GB, Cramer MN, Ravanelli NM, Morris NB, Jay O. Acute acetaminophen ingestion does not alter core temperature or sweating during exercise in hot–humid conditions. Scand J Med Sci Sports. 2015;25:96103. PubMed ID: 25943660 doi:10.1111/sms.12336

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Veltmeijer MTW, Veeneman D, Bongers CCCW, et al. The impact of central and peripheral cyclooxygenase enzyme inhibition on exercise-induced elevations in core body temperature. Int J Sports Physiol Perform. 2017;12(5):662. PubMed ID: 27768523 doi:10.1123/ijspp.2016-0382

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Anderson BJ. Paracetamol (acetaminophen): mechanisms of action. Pediatr Anesth. 2008;18(10):915921. PubMed ID: 18811827 doi:10.1111/j.1460-9592.2008.02764.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Esh CJ, Chrismas BCR, Mauger AR, Taylor L. Pharmacological hypotheses: is acetaminophen selective in its cyclooxygenase inhibition? Pharmacol Res Perspect. 2021;9(4):e00835. PubMed ID: 34278737 doi:10.1002/prp2.835

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Stevens CJ, Mauger AR, Hassmèn P, Taylor L. Endurance performance is influenced by perceptions of pain and temperature: theory, applications and safety considerations. Sports Med. 2017;48(3):525537. doi:10.1007/s40279-017-0852-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Mauger A, Jones A, Williams CA. Influence of acetaminophen on performance during time trial cycling. J Appl Physiol. 2010;108(1):98104. doi:10.1152/japplphysiol.00761.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Foster J, Mauger A, Thomasson K, White S, Taylor L. Effect of acetaminophen ingestion on thermoregulation of normothermic, non-febrile humans. Front Pharmacol. 2016;7:54. PubMed ID: 27014068 doi:10.3389/fphar.2016.00054

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    de Pauw K, Roelands B, Cheung SS, de Geus B, Rietjens G, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111122. PubMed ID: 23428482 doi:10.1123/ijspp.8.2.111

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Liguori G, Feito Y, Fountaine C, Roy B. ACSM’s Guidelines for Exercise Testing and Prescription. 11th ed. Philadelphia: Wolters Kluwer; 2021.

    • Search Google Scholar
    • Export Citation
  • 25.

    Nana A, Slater GJ, Stewart AD, Burke LM. Methodology review: using dual-energy x-ray absorptiometry (DXA) for the assessment of body composition in athletes and active people. Int J Sport Nutr Exercise Metab. 2015;25(2):198215. doi:10.1123/ijsnem.2013-0228

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Hawley JA, Noakes TD. Peak power output predicts maximal oxygen uptake and performance time in trained cyclists. Eur J Appl Physiol. 1992;65(1):7983. PubMed ID: 1505544 doi:10.1007/BF01466278

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Gagge AP, Stolwijk JAJ, Hardy JD. Comfort and thermal sensations and associated physiological responses at various ambient temperatures. Environ Res. 1967;1(1):120. PubMed ID: 5614624 doi:10.1016/0013-9351(67)90002-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Young AJ, Sawka MN, Epstein Y, Decristofano B, Pandolf KB. Cooling different body surfaces during upper and lower body exercise. J Appl Physiol. 1987;63(3):12181223. doi:10.1152/jappl.1987.63.3.1218

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Esh CJ, Mauger A, Palfreeman RA, Al-Janubi H, Taylor L. Acetaminophen (paracetamol): use beyond pain management and dose variability. Front Physiol. 2017;8:1092. PubMed ID: 29312002 doi:10.3389/fphys.2017.01092

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Loniewski I, Sawrymowicz M, Pawlik A, Wójcicki J, Drozdzik M. Lack of effect of physical exercise on pharmacokinetics of acetaminophen tablets in healthy subjects. Acta Poloniae Pharmaceutica. 2001;58(2):141144. PubMed ID: 11501793

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Cox GR, Desbrow B, Montgomery PG, et al. Effect of different protocols of caffeine intake on metabolism and endurance performance. J Appl Physiol. 2002;93(3):990999. doi:10.1152/japplphysiol.00249.2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Mitchell D, Wyndham CH. Comparison of weighting formulas for calculating mean skin temperature. J Appl Physiol. 1969;26(5):616622. doi:10.1152/jappl.1969.26.5.616

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Borg GAV. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:10.1249/00005768-198205000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Bradford C, Cotter JD, Thorburn MS, Walker RJ, Gerrard DF. Exercise can be pyrogenic in humans. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R143R149. doi:10.1152/ajpregu.00926.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Morgan DJ, Bray KM. Lean body mass as a predictor of drug dosage. Clin Pharmacokinet. 1994;26(4):292307. PubMed ID: 8013162 doi:10.2165/00003088-199426040-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Esh CJ, Chrismas BCR, Mauger AR, Cherif A, Molphy J, Taylor L. The influence of environmental and core temperature on cyclooxygenase and PGE2 in healthy humans. Sci Rep. 2021;11(1):65316536. PubMed ID: 33753764 doi:10.1038/s41598-021-84563-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3413 1771 53
Full Text Views 35 16 0
PDF Downloads 53 22 0