Physiological Profiling and Energy System Contributions During Simulated Epée Matches in Elite Fencers

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Woo-Hwi Yang
Search for other papers by Woo-Hwi Yang in
Current site
Google Scholar
PubMed
Close
,
Jeong-Hyun Park
Search for other papers by Jeong-Hyun Park in
Current site
Google Scholar
PubMed
Close
,
Yun-Cheol Shin
Search for other papers by Yun-Cheol Shin in
Current site
Google Scholar
PubMed
Close
, and
Jun Kim
Search for other papers by Jun Kim in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: The aim of this study was to investigate physiological responses and energetic contributions during simulated epée matches in elite fencers. Methods: Ten elite male fencers participated in simulated epée (direct elimination) matches. Simulated epée matches included 3 bouts of 3 minutes each with 1-minute rests between bouts. During these sessions, physiological variables such as mean and peak heart rate, peak and mean oxygen uptake (VO2peak and VO2mean), metabolic equivalents of task in VO2peak and VO2mean, and blood lactate concentrations (peak lactate concentration and delta blood lactate concentration) were measured. Furthermore, energetic contributions (oxidative [WOxi], glycolytic, and phosphagen) and time–motion variables were estimated. Results: Values of peak heart rate, mean heart rate, and WOxi (in percentages) were significantly higher in the second and third bouts compared with the first. VO2peak and metabolic equivalents of task in VO2peak were significantly higher in the first bout compared with the third bout. Values of delta blood lactate concentration and glycolytic contribution (in kilojoules and percentages) were significantly lower in the second and third bouts compared with the first. VO2mean and metabolic equivalents of task in VO2mean were significantly higher in the second bout compared with the third bout. Furthermore, WOxi (in kilojoules and percentage) was significantly higher in all bouts compared with phosphagen and glycolytic contributions. Low positive and negative correlations were seen between WOxi, VO2mean, sum of attacks and defense times, and the sum of time without attacks and defenses. Conclusions: Direct-elimination epée matches consist of high-intensity intermittent exercise, and the oxidative contribution is 80% to 90%. Improving aerobic conditioning may support high-intensity intermittent actions during entire epée matches in elite fencers.

Yang and Park are with the Graduate School of Sports Medicine, and Yang, Shin, and Kim, the Dept of Medicine, General Graduate School, Cha University, Seongnam, Republic of Korea.

Yang (ywh1235@cha.ac.kr) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Roi GS, Bianchedi D. The science of fencing. Sports Med. 2008;38(6):465481. PubMed ID: 18489194 doi:10.2165/00007256-200838060-00003

  • 2.

    Koutedakis Y, Ridgeon A, Sharp NC, Boreham C. Seasonal variation of selected performance parameters in épée fencers. Br J Sports Med. 1993;27(3):171174. PubMed ID: 8242273 doi:10.1136/bjsm.27.3.171

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bottoms L. Physiological responses and energy expenditure to simulated epee fencing in elite female fencers. Serb J Sports Sci. 2011;5(1):1720.

    • Search Google Scholar
    • Export Citation
  • 4.

    Oates LW, Campbell IG, Iglesias X, Price MJ, Muniz-Pumares D, Bottoms LM. The physiological demands of elite epée fencers during competition. Int J Perform Anal Sport. 2019;19(1):7689. doi:10.1080/24748668.2018.1563858

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Paul S, Miller W, Beasley P, Bottoms L. Epée Fencing: A Step-by-Step Guide to Achieving Olympic Gold (With No Guarantee You’ll Get Anywhere Near It). Wellard Publishing; 2011.

    • Search Google Scholar
    • Export Citation
  • 6.

    Bottoms L, Sinclair J, Rome P, Gregory K, Price M. Development of a lab based epee fencing protocol. Int J Perform Anal Sport. 2013;13(1):1122. doi:10.1080/24748668.2013.11868628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Hargreaves M, Spriet LL. Skeletal muscle energy metabolism during exercise. Nat Metab. 2020;2(9):817828. PubMed ID: 32747792 doi:10.1038/s42255-020-0251-4

  • 8.

    Yang W-H, Park H, Grau M, Heine O. Decreased blood glucose and lactate: is a useful indicator of recovery ability in athletes? Int J Environ Res Public Health. 2020;17(15):5470. doi:10.3390/ijerph17155470

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Turner A, James N, Dimitriou L, et al. Determinants of olympic fencing performance and implications for strength and conditioning training. J Strength Cond Res. 2014;28(10):30013011. PubMed ID: 24714533 doi:10.1519/JSC.0000000000000478

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Milia R, Roberto S, Pinna M, et al. Physiological responses and energy expenditure during competitive fencing. Appl Physiol Nutr Metab. 2014;39(3):324328. PubMed ID: 24552373 doi:10.1139/apnm-2013-0221

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Franchini E. High-intensity interval training prescription for combat-sport athletes. Int J Sports Physiol Perform. 2020;15(6):767776. PubMed ID: 32502972 doi:10.1123/ijspp.2020-0289

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Davis P, Leithauser RM, Beneke R. The energetics of semicontact 3 x 2-min amateur boxing. Int J Sports Physiol Perform. 2014;9(2):233239. PubMed ID: 24572964 doi:10.1123/ijspp.2013-0006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Doria C, Veicsteinas A, Limonta E, et al. Energetics of karate (kata and kumite techniques) in top-level athletes. Eur J Appl Physiol. 2009;107(5):603610. PubMed ID: 19711097 doi:10.1007/s00421-009-1154-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Beneke R, Beyer T, Jachner C, Erasmus J, Hütler M. Energetics of karate kumite. Eur J Appl Physiol. 2004;92(4–5):518523. PubMed ID: 15138826 doi:10.1007/s00421-004-1073-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Julio UF, Panissa VL, Esteves JV, Cury RL, Agostinho MF, Franchini E. Energy-system contributions to simulated judo matches. Int J Sports Physiol Perform. 2017;12(5):676683. PubMed ID: 27736247 doi:10.1123/ijspp.2015-0750

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Campos FAD, Bertuzzi R, Dourado AC, Santos VGF, Franchini E. Energy demands in taekwondo athletes during combat simulation. Eur J Appl Physiol. 2012;112(4):12211228. PubMed ID: 21769736 doi:10.1007/s00421-011-2071-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Yang W-H, Heine O, Grau M. Rapid weight reduction does not impair athletic performance of Taekwondo athletes—a pilot study. PLoS One. 2018;13(4):e0196568. PubMed ID: 29698457 doi:10.1371/journal.pone.0196568

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Hausen M, Soares PP, Araújo MP, et al. Physiological responses and external validity of a new setting for taekwondo combat simulation. PLoS One. 2017;12(2):e0171553. PubMed ID: 28158252 doi:10.1371/journal.pone.0171553

    • Search Google Scholar
    • Export Citation
  • 19.

    Turner AN, Kilduff LP, Marshall GJG, et al. Competition intensity and fatigue in elite fencing. J Strength Cond Res. 2017;31(11):31283136. PubMed ID: 28902120 doi:10.1519/JSC.0000000000001758

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    de Campos Mello F, de Moraes Bertuzzi RC, Grangeiro PM, Franchini E. Energy systems contributions in 2,000 m race simulation: a comparison among rowing ergometers and water. Eur J Appl Physiol. 2009;107(5):615. PubMed ID: 19707782 doi:10.1007/s00421-009-1172-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Bertuzzi RC, Franchini E, Kokubun E, Kiss MA. Energy system contributions in indoor rock climbing. Eur J Appl Physiol. 2007;101(3):293300. PubMed ID: 17602238 doi:10.1007/s00421-007-0501-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    di Prampero PE, Ferretti G. The energetics of anaerobic muscle metabolism: a reappraisal of older and recent concepts. Respir Physiol. 1999;118(2):103115. doi:10.1016/S0034-5687(99)00083-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Lopes-Silva JP, da Silva Santos JF, Branco BHM, et al. Caffeine ingestion increases estimated glycolytic metabolism during taekwondo combat simulation but does not improve performance or parasympathetic reactivation. PLoS One. 2015;10(11):e0142078. PubMed ID: 26539982 doi:10.1371/journal.pone.0142078

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Gastin PB. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001;31(10):725741. PubMed ID: 11547894 doi:10.2165/00007256-200131100-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Marcon G, Franchini E, Jardim JR, Neto TLB. Structural analysis of action and time in sports: judo. J Quant Anal Sports. 2010;6(4):1–13.

    • Search Google Scholar
    • Export Citation
  • 26.

    Salvadora A, Suay F, Martinez-Sanchis S, Simon VM, Brain PF. Correlating testosterone and fighting in male participants in judo contests. Physiol Behav. 1999;68(1–2):205209. PubMed ID: 10627082

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Fritz CO, Morris PE, Richler JJ. Effect size estimates: current use, calculations, and interpretation. J Exp Psychol Gen. 2012;141(1):218. PubMed ID: 21823805 doi:10.1037/a0024338

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Lee K-H, Ju H-M, Yang W-H. Metabolic energy contributions during high-intensity hatha yoga and physiological comparisons between active and passive (savasana) recovery. Front Physiol. 2021;12(1555):743859. doi:10.3389/fphys.2021.743859

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Heck H, Schulz H, Bartmus U. Diagnostics of anaerobic power and capacity. Eur J Sport Sci. 2003;3(3):123. doi:10.1080/17461390300073302

  • 30.

    Park SB, Park DS, Kim M, et al. High-intensity warm-up increases anaerobic energy contribution during 100-m sprint. Biology. 2021;10(3):198. doi:10.3390/biology10030198

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Treff G, Winkert K, Sareban M, Steinacker JM, Sperlich B. The polarization-index: a simple calculation to distinguish polarized from non-polarized training intensity distributions. Front Physiol. 2019;10:707. PubMed ID: 31249533 doi:10.3389/fphys.2019.00707

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Jamnick NA, Pettitt RW, Granata C, Pyne DB, Bishop DJ. An examination and critique of current methods to determine exercise intensity. Sports Med. 2020;50(10):17291756. PubMed ID: 32729096 doi:10.1007/s40279-020-01322-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Franchini E, Takito MY, Bertuzzi RdM. Morphological, physiological and technical variables in high-level college judoists. Arch Budo. 2005;1(1):17.

    • Search Google Scholar
    • Export Citation
  • 34.

    Franchini E, Artioli GG, Brito CJ. Judo combat: time-motion analysis and physiology. Int J Perform Anal Sport. 2013;13(3):624641. doi:10.1080/24748668.2013.11868676

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Rodríguez FA, Mader A. Energy systems in swimming. In: World Book of Swimming. From Science to Performance. New York, NY: Nova; 2011:225240.

    • Search Google Scholar
    • Export Citation
  • 36.

    Gaitanos GC, Williams C, Boobis LH, Brooks S. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol. 1993;75(2):712719. doi:10.1152/jappl.1993.75.2.712

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Brooks GA. The science and translation of lactate shuttle theory. Cell Metab. 2018;27(4):757785. PubMed ID: 29617642 doi:10.1016/j.cmet.2018.03.008

  • 38.

    Lee D, Son JY, Ju HM, Won JH, Park SB, Yang WH. Effects of individualized low-intensity exercise and its duration on recovery ability in adults. Healthcare. 2021;9(3):249. doi:10.3390/healthcare9030249

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Hoch F, Werle E, Weicker H. Sympathoadrenergic regulation in elite fencers in training and competition. Int J Sports Med. 1988;9(suppl 1):141145. doi:10.1055/s-2008-1025629

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Fernandez-Fernandez J, Boullosa DA, Sanz-Rivas D, Abreu L, Filaire E, Mendez-Villanueva A. Psychophysiological stress responses during training and competition in young female competitive tennis players. Int J Sports Med. 2015;36(1):2228. PubMed ID: 25251448

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Viru M, Hackney AC, Karelson K, Janson T, Kuus M, Viru A. Competition effects on physiological responses to exercise: performance, cardiorespiratory and hormonal factors. Acta Physiol Hung. 2010;97(1):2230. PubMed ID: 20233687 doi:10.1556/APhysiol.97.2010.1.3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3698 1972 74
Full Text Views 48 24 6
PDF Downloads 66 39 7