Effects of Long-Haul Travel and the Olympic Games on Heart-Rate Variability in Rugby Sevens Medalists

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Andrew A. Flatt
Search for other papers by Andrew A. Flatt in
Current site
Google Scholar
PubMed
Close
and
Daniel Howells
Search for other papers by Daniel Howells in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To report the impact of long-haul travel and the Olympic tournament on heart-rate variability and subjective well-being in a rugby sevens team. Methods: Players (N = 12 men) recorded daily root mean square of successive differences (LnRMSSD) and brief subjective well-being assessments before and throughout the Olympic tournament. Following a 7-day baseline involving a tournament simulation, 2 flights were taken to Brazil (20-h travel and 4-h time gain) on day 1. Matches occurred on days 13 to 15. Undefeated, the team advanced to the gold-medal final. Team staff used a combination of proactive and reactive strategies to support training adaptations, mitigate negative effects of travel, and facilitate recovery from competition. Results: Peak LnRMSSD values from the preceding preparatory period were observed at baseline. Perceived recovery was impaired on day 1 following tournament simulation (P < .05). Lower and less stable LnRMSSD trends were observed in players within the first week following long-haul travel (P < .05), evident primarily in nonstarters (effect size = unclear to very large) versus starters (effect size = unclear). Status markers were subsequently maintained at baseline or improved prior to the tournament and were minimally affected by competition (P > .05). Changes in LnRMSSD were associated (P < .05) with changes in perceived recovery (day 14, ρ = .64) and sleep quality (day 15, ρ = .69) during the tournament. Conclusions: Attentiveness to player health and well-being throughout preparation, travel, and the Olympic tournament potentially mitigated decrements in status markers, thereby reducing potential for fatigue or stress-related performance impairment.

Flatt is with the Dept of Health Sciences and Kinesiology, Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, GA, USA. Howells is with Rugby Football Union, Rugby House, Twickenham Stadium, Twickenham, United Kingdom.

Flatt (aflatt@georgiasouthern.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Schwellnus M, Soligard T, Alonso JM, et al. How much is too much? (Part 2) International Olympic Committee consensus statement on load in sport and risk of illness. Br J Sports Med. 2016;50(17):10431052. PubMed ID: 27535991 doi:10.1136/bjsports-2016-096572

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Fowler PM, Knez W, Crowcroft S, et al. Greater effect of east versus west travel on jet lag, sleep, and team sport performance. Med Sci Sports Exerc. 2017;49(12):25482561. PubMed ID: 28719491 doi:10.1249/MSS.0000000000001374

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Soligard T, Steffen K, Palmer D, et al. Sports injury and illness incidence in the Rio de Janeiro 2016 Olympic Summer Games: a prospective study of 11274 athletes from 207 countries. Br J Sports Med. 2017;51(17):12651271. PubMed ID: 28756389 doi:10.1136/bjsports-2017-097956

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Higham DG, Pyne DB, Anson JM, et al. Physiological, anthropometric, and performance characteristics of rugby sevens players. Int J Sports Physiol Perform. 2013;8(1):1927. PubMed ID: 22868376 doi:10.1123/ijspp.8.1.19

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    West D, Cook C, Stokes K, et al. Profiling the time-course changes in neuromuscular function and muscle damage over two consecutive tournament stages in elite rugby sevens players. J Sci Med Sport. 2014;17(6):688692. PubMed ID: 24332752 doi:10.1016/j.jsams.2013.11.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Flatt AA, Howells D. Effects of varying training load on heart rate variability and running performance among an Olympic rugby sevens team. J Sci Med Sport. 2019;22(2):222226. PubMed ID: 30055959 doi:10.1016/j.jsams.2018.07.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Flatt AA, Howells D, Williams S. Effects of consecutive domestic and international tournaments on heart rate variability in an elite rugby sevens team. J Sci Med Sport. 2019;22(5):616621. PubMed ID: 30527686 doi:10.1016/j.jsams.2018.11.022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Robineau J, Marrier B, Le Meur Y, et al. “Road to Rio”: a case study of workload periodization strategy in rugby-7s during an Olympic season. Front Sports Act Living. 2019;1:72. PubMed ID: 33344995 doi:10.3389/fspor.2019.00072

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Stanley J, Peake JM, Buchheit M. Cardiac parasympathetic reactivation following exercise: implications for training prescription. Sports Med. 2013;43(12):12591277. PubMed ID: 23912805 doi:10.1007/s40279-013-0083-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Plews DJ, Laursen PB, Kilding AE, et al. Heart rate variability in elite triathletes, is variation in variability the key to effective training? A case comparison. Eur J Appl Physiol. 2012;112(11):37293741. PubMed ID: 22367011 doi:10.1007/s00421-012-2354-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Souza RA, Beltran OAB, Zapata DM, et al. Heart rate variability, salivary cortisol and competitive state anxiety responses during pre-competition and pre-training moments. Biol Sport. 2019;36(1):3946. PubMed ID: 30899138 doi:10.5114/biolsport.2018.78905

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Haddad HA, Parouty J, Buchheit M. Effect of daily cold water immersion on heart rate variability and subjective ratings of well-being in highly trained swimmers. Int J Sports Physiol Perf. 2012;7(1):3338. doi:10.1123/ijspp.7.1.33

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Reilly T, Atkinson G, Edwards B, et al. Coping with jet-lag: a position statement for the European College of Sport Science. Eur J Sport Sci. 2007;7(1):17. doi:10.1080/17461390701216823

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Flatt AA, Hornikel B, Nakamura FY, et al. Effect of competitive status and experience on heart rate variability profiles in collegiate sprint-swimmers. J Strength Cond Res. Published online February 26, 2021. doi:10.1519/JSC.0000000000003992

    • Search Google Scholar
    • Export Citation
  • 15.

    Flatt AA, Allen JR, Keith CM, et al. Season-long heart-rate variability tracking reveals autonomic imbalance in American college football players. Int J Sports Physiol Perf. 2022;16(12):18341843. doi:10.1123/ijspp.2020-0801

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Hedges LV. Distribution theory for Glass’s estimator of effect size and related estimators. J Educat Stat. 1981;6(2):107128. doi:10.3102/10769986006002107

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Hopkins W, Marshall S, Batterham A, et al. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):312. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis. Sports Med. 2013;43(5):313338. PubMed ID: 23539308 doi:10.1007/s40279-013-0029-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Walsh NP. Nutrition and athlete immune health: new perspectives on an old paradigm. Sports Med. 2019;49:153168. PubMed ID: 31691927 doi:10.1007/s40279-019-01160-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Kiviniemi AM, Hautala AJ, Kinnunen H, et al. Endurance training guided individually by daily heart rate variability measurements. Eur J Appl Physiol. 2007;101(6):743751. PubMed ID: 17849143 doi:10.1007/s00421-007-0552-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Louis J, Theurot D, Filliard JR, et al. The use of whole-body cryotherapy: time- and dose-response investigation on circulating blood catecholamines and heart rate variability. Eur J Appl Physiol. 2020;120(8):17331743. PubMed ID: 32474683 doi:10.1007/s00421-020-04406-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Hautala AJ, Kiviniemi AM, Tulppo MP. Individual responses to aerobic exercise: the role of the autonomic nervous system. Neurosci Biobehav Rev. 2009;33(2):107115. PubMed ID: 18514313 doi:10.1016/j.neubiorev.2008.04.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Perna G, Riva A, Defillo A, et al. Heart rate variability: can it serve as a marker of mental health resilience?: special Section on “Translational and Neuroscience Studies in Affective Disorders” Section Editor, Maria Nobile MD, PhD. J Affect Disord. 2020;263:754761. PubMed ID: 31630828 doi:10.1016/j.jad.2019.10.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Fowler PM, Duffield R, Lu D, et al. Effects of long-haul transmeridian travel on subjective jet-lag and self-reported sleep and upper respiratory symptoms in professional rugby league players. Int J Sports Physiol Perform. 2016;11(7):876884. PubMed ID: 26788986 doi:10.1123/ijspp.2015-0542

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Bermon S, Castell LM, Calder PC, et al. Consensus statement immunonutrition and exercise. Exercise Immunol Rev. 2017;23:850.

  • 26.

    Broatch JR, Bishop DJ, Zadow EK, et al. Effects of sports compression socks on performance, physiological, and hematological alterations after long-haul air travel in elite female volleyballers. J Strength Cond Res. 2019;33(2):492501. PubMed ID: 30531419 doi:10.1519/JSC.0000000000003002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Cardinali DP, Bortman GP, Liotta G, et al. A multifactorial approach employing melatonin to accelerate resynchronization of sleep-wake cycle after a 12 time-zone westerly transmeridian flight in elite soccer athletes. J Pineal Res. 2002;32(1):4146. PubMed ID: 11841599 doi:10.1034/j.1600-079x.2002.10820.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Voltaire B, Galy O, Coste O, et al. Effect of fourteen days of acclimatization on athletic performance in tropical climate. Can J Appl Physiol. 2002;27(6):551562. PubMed ID: 12500994 doi:10.1139/h02-031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Wolf SA, Eys MA, Kleinert J. Predictors of the precompetitive anxiety response: relative impact and prospects for anxiety regulation. Int J Sport Exerc Psychol. 2015;13(4):344358. doi:10.1080/1612197X.2014.982676

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Leduc C, Robineau J, Tee JC, et al. The travel demands of an elite rugby sevens team: effects on objective and subjective sleep parameters. Int J Sports Physiol Perform. 2021;16(5):688694. PubMed ID: 33540379 doi:10.1123/ijspp.2020-0243

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3325 1732 55
Full Text Views 39 20 3
PDF Downloads 53 23 3