Responses to a 5-Day Sport-Specific Heat Acclimatization Camp in Elite Female Rugby Sevens Athletes

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Mitchell J. Henderson
Search for other papers by Mitchell J. Henderson in
Current site
Google Scholar
PubMed
Close
,
Bryna C.R. Chrismas
Search for other papers by Bryna C.R. Chrismas in
Current site
Google Scholar
PubMed
Close
,
Job Fransen
Search for other papers by Job Fransen in
Current site
Google Scholar
PubMed
Close
,
Aaron J. Coutts
Search for other papers by Aaron J. Coutts in
Current site
Google Scholar
PubMed
Close
, and
Lee Taylor
Search for other papers by Lee Taylor in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To describe the physiological (resting core temperature, exercising heart rate, and sweat rate) and psychophysical (rating of perceived exertion, thermal sensation, and thermal comfort) responses to a short-term heat acclimatization (HA) training camp in elite female rugby sevens athletes. Methods: Nineteen professional female rugby sevens athletes participated in a 5-day HA camp in Darwin, Australia (training average: 32.2°C and 58% relative humidity). Training involved normal team practice prescribed by appropriate staff. Markers of physiological and psychophysical adaptations to HA were collected at various stages during the camp. Partial eta-squared effect sizes (from linear mixed-effects models), rank-biserial correlations (from Freidman tests), and P values were used to assess changes across the protocol. Results: Resting core temperature did not significantly change. Exercising heart rate showed a large and significant reduction from day 1 to day 5 (175 [13] vs 171 [12] beats·min−1), as did sweat rate (1.1 [0.3] vs 1.0 [0.2] L·h–1). Thermal sensation showed a large and significant reduction between day 1 and day 5 (median [interquartile range] = 5 [5–5.5] vs 4.5 [4–5]). Changes in rating of perceived exertion and thermal comfort were unclear. Conclusions: Beneficial cardiovascular adaptations were observed simultaneously across a full squad of elite female rugby sevens players (without expensive facilities/equipment or modifying training content). However, beneficial changes in resting core temperature, sweat rate, and thermal/effort perceptions likely require a greater thermal impulse. These data contribute to the development of evidence-informed practice for minimal effective HA doses in female team-sport athletes, who are underrepresented in the current research.

Henderson, Fransen, Coutts, and Taylor are with the School of Sport, Exercise and Rehabilitation, Faculty of Health, and the Human Performance Research Centre, University of Technology Sydney (UTS), Sydney, NSW, Australia. Henderson is also with Rugby Australia, Sydney, Australia. Chrismas is with the Dept of Physical Education, College of Education, Qatar University, Doha, Qatar. Taylor is also with the School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom.

Taylor (l.taylor2@lboro.ac.uk) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Tyler CJ, Reeve T, Hodges GJ, Cheung SS. The effects of heat adaptation on physiology, perception and exercise performance in the heat: a meta-analysis. Sports Med. 2016;46(11):16991724. PubMed ID: 27106556 doi:10.1007/s40279-016-0538-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Daanen HAM, Racinais S, Periard JD. Heat acclimation decay and re-induction: a systematic review and meta-analysis. Sports Med. 2018;48(2):409430. PubMed ID: 29129022 doi:10.1007/s40279-017-0808-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Kissling LS, Akerman AP, Cotter JD. Heat-induced hypervolemia: does the mode of acclimation matter and what are the implications for performance at Tokyo 2020? Temperature. 2020;7(2):129148. doi:10.1080/23328940.2019.1653736

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Flouris AD, Schlader ZJ. Human behavioral thermoregulation during exercise in the heat. Scand J Med Sci Sports. 2015;25(suppl 1):5264. doi:10.1111/sms.12349

  • 5.

    Racinais S, Alonso JM, Coutts AJ, et al. Consensus recommendations on training and competing in the heat. Br J Sports Med. 2015;49(18):11641173. PubMed ID: 26069301 doi:10.1136/bjsports-2015-094915

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Giersch GEW, Morrissey MC, Katch RK, et al. Menstrual cycle and thermoregulation during exercise in the heat: a systematic review and meta-analysis. J Sci Med Sport. 2020;23(12):11341140. PubMed ID: 32499153 doi:10.1016/j.jsams.2020.05.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hutchins KP, Borg DN, Bach AJE, Bon JJ, Minett GM, Stewart IB. Female (under) representation in exercise thermoregulation research. Sports Med Open. 2021;7(1):43. PubMed ID: 34156570 doi:10.1186/s40798-021-00334-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Kirby NV, Lucas SJE, Cable TG, Armstrong OJ, Weaver SR, Lucas RAI. Sex differences in adaptation to intermittent post-exercise sauna bathing in trained middle-distance runners. Sports Med Open. 2021;7(1):51. PubMed ID: 34297227 doi:10.1186/s40798-021-00342-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Wickham KA, Wallace PJ, Cheung SS. Sex differences in the physiological adaptations to heat acclimation: a state-of-the-art review. Eur J Appl Physiol. 2020;121(2):353367. PubMed ID: 33205218 doi:10.1007/s00421-020-04550-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Guy J, Deakin G, Edwards A, Miller C, Pyne D. Adaptation to hot environmental conditions: an exploration of the performance basis, procedures and future directions to optimise opportunities for elite athletes. Sports Med. 2015;45(3):303311. PubMed ID: 25380791 doi:10.1007/s40279-014-0277-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Bangsbo J, Iaia FM, Krustrup P. The yo-yo intermittent recovery test. Sports Med. 2008;38(1):3751. PubMed ID: 18081366 doi:10.2165/00007256-200838010-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    de Korte JQ, Bongers CCWG, Hopman MTE, Eijsvogels TMH. Exercise performance and thermoregulatory responses of elite athletes exercising in the heat: outcomes of the thermo Tokyo study. Sports Med. 2021;51(11):24232436. PubMed ID: 34396493 doi:10.1007/s40279-021-01530-w

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Periard JD, Racinais S, Timpka T, et al. Strategies and factors associated with preparing for competing in the heat: a cohort study at the 2015 IAAF World Athletics Championships. Br J Sports Med. 2017;51(4):264270. PubMed ID: 27815238

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Henderson MJ, Chrismas BCR, Stevens CJ, Coutts AJ, Taylor L. Changes in core temperature during an elite female rugby sevens tournament. Int J Sports Physiol Perform. 2020;15(4):571580. doi:10.1123/ijspp.2019-0375

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Byrne C, Lim CL. The ingestible telemetric body core temperature sensor: a review of validity and exercise applications. Br J Sports Med. 2007;41(3):126133. PubMed ID: 17178778 doi:10.1136/bjsm.2006.026344

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Taylor L, Thornton HR, Lumley N, Stevens CJ. Alterations in core temperature during World Rugby Sevens Series tournaments in temperate and warm environments. Eur J Sport Sci. 2018;19(4):432441. PubMed ID: 30305001 doi:10.1080/17461391.2018.1527949

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Travers GJS, Nichols DS, Farooq A, Racinais S, Périard JD. Validation of an ingestible temperature data logging and telemetry system during exercise in the heat. Temperature. 2016;3(2):208219. doi:10.1080/23328940.2016.1171281

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Bongers C, Daanen HAM, Bogerd CP, Hopman MTE, Eijsvogels TMH. Validity, reliability, and inertia of four different temperature capsule systems. Med Sci Sports Exerc. 2018;50(1):169175. PubMed ID: 28816921 doi:10.1249/MSS.0000000000001403

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Taylor L, Stevens CJ, Thornton HR, Poulos N, Chrismas BCR. Limiting the rise in core temperature during a rugby sevens warm-up with an ice vest. Int J Sports Physiol Perform. 2019;14(9):12121218. doi:10.1123/ijspp.2018-0821

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Henderson MJ, Chrismas BCR, Stevens CJ, et al. Additional clothing increases heat load in elite female rugby sevens players. Int J Sports Physiol Perform. 2021;16(10):14241431. doi:10.1123/ijspp.2020-0620

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Buchheit M, Simpson BM, Lacome M. Monitoring cardiorespiratory fitness in professional soccer players: is it worth the prick? Int J Sports Physiol Perform. 2020;15(10):14371441. PubMed ID: 33004681 doi:10.1123/ijspp.2019-0911.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Thorpe RT, Strudwick AJ, Buchheit M, Atkinson G, Drust B, Gregson W. Tracking morning fatigue status across in-season training weeks in elite soccer players. Int J Sports Physiol Perform. 2016;11(7):947952. PubMed ID: 26816390 doi:10.1123/ijspp.2015-0490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Buchheit M, Cholley Y, Lambert P. Psychometric and physiological responses to a preseason competitive camp in the heat with a 6-hour time difference in elite soccer players. Int J Sports Physiol Perform. 2016;11(2):176181. PubMed ID: 26182437 doi:10.1123/ijspp.2015-0135

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Buchheit M, Simpson MB, Al Haddad H, Bourdon PC, Mendez-Villanueva A. Monitoring changes in physical performance with heart rate measures in young soccer players. Eur J Appl Physiol. 2012;112(2):711723. PubMed ID: 21656232 doi:10.1007/s00421-011-2014-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Lacome M, Simpson B, Buchheit M. Monitoring training status with player-tracking technology. Still on the road to Rome. Part 1. ASPETAR Sport Med J.. 2018;7:5563.

    • Search Google Scholar
    • Export Citation
  • 26.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:10.1249/00005768-198205000-00012

  • 27.

    Young AJ, Sawka MN, Epstein Y, Decristofano B, Pandolf KB. Cooling different body surfaces during upper and lower body exercise. J Appl Physiol. 1987;63(3):12181223. PubMed ID: 3654466 doi:10.1152/jappl.1987.63.3.1218

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria; 2019. https://www.R-project.org/.

    • Search Google Scholar
    • Export Citation
  • 29.

    Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):148. doi:10.18637/jss.v067.i01

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Kenward MG, Roger JH. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics. 1997;53(3):983997. PubMed ID: 9333350 doi:10.2307/2533558

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Luke SG. Evaluating significance in linear mixed-effects models in R. Behav Res Methods. 2017;49(4):14941502. PubMed ID: 27620283 doi:10.3758/s13428-016-0809-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol. 2013;4(2):133142. doi:10.1111/j.2041-210x.2012.00261.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Ben-Shachar MS, Makowski D, Lüdecke D. Compute and interpret indices of effect size. R package. 2020. https://github.com/easystats/effectsize.

    • Search Google Scholar
    • Export Citation
  • 34.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: L. Erlbaum Associates; 1988.

  • 35.

    Knief U, Forstmeier W. Violating the normality assumption may be the lesser of two evils. Behav Res Methods. 2021;53:25762590. doi:10.3758/s13428-021-01587-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Senay LC, Mitchell D, Wyndham CH. Acclimatization in a hot, humid environment: body fluid adjustments. J Appl Physiol. 1976;40(5):786796. PubMed ID: 931907 doi:10.1152/jappl.1976.40.5.786

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Neal RA, Corbett J, Massey HC, Tipton MJ. Effect of short-term heat acclimation with permissive dehydration on thermoregulation and temperate exercise performance. Scand J Med Sci Sports. 2016;26(8):875884. PubMed ID: 26220213 doi:10.1111/sms.12526

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Sawka MN, Leon LR, Montain SJ, Sonna LA. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress. Compr Physiol. 2011;1(4):18831928. PubMed ID: 23733692

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3280 1773 69
Full Text Views 46 29 0
PDF Downloads 71 36 0