Active Relative to Passive Ischemic Preconditioning Enhances Intense Endurance Performance in Well-Trained Men

Click name to view affiliation

Danny Christiansen
Search for other papers by Danny Christiansen in
Current site
Google Scholar
PubMed
Close
,
Casper B.L. Olsen
Search for other papers by Casper B.L. Olsen in
Current site
Google Scholar
PubMed
Close
,
Frederik Kehler
Search for other papers by Frederik Kehler in
Current site
Google Scholar
PubMed
Close
,
Anders P. Hansen
Search for other papers by Anders P. Hansen in
Current site
Google Scholar
PubMed
Close
,
Søren Jessen
Search for other papers by Søren Jessen in
Current site
Google Scholar
PubMed
Close
,
Peter M. Christensen
Search for other papers by Peter M. Christensen in
Current site
Google Scholar
PubMed
Close
, and
Jens Bangsbo
Search for other papers by Jens Bangsbo in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: This study tested the hypothesis of whether ischemic exercise preconditioning (IPC-Ex) elicits a better intense endurance exercise performance than traditional ischemic preconditioning at rest (IPC-rest) and a SHAM procedure. Methods: Twelve men (average V˙O2max ∼61 mL·kg−1·min−1) performed 3 trials on separate days, each consisting of either IPC-Ex (3 × 2-min cycling at ∼40 W with a bilateral-leg cuff pressure of ∼180 mm Hg), IPC-rest (4 × 5-min supine rest at 220 mm Hg), or SHAM (4 × 5-min supine rest at <10 mm Hg) followed by a standardized warm-up and a 4-minute maximal cycling performance test. Power output, blood lactate, potassium, pH, rating of perceived exertion, oxygen uptake, and gross efficiency were assessed. Results: Mean power during the performance test was higher in IPC-Ex versus IPC-rest (+4%; P = .002; 95% CI, +5 to 18 W). No difference was found between IPC-rest and SHAM (−2%; P = .10; 95% CI, −12 to 1 W) or between IPC-Ex and SHAM (+2%; P = .09; 95% CI, −1 to 13 W). The rating of perceived exertion increased following the IPC-procedure in IPC-Ex versus IPC-rest and SHAM (P < .001). During warm-up, IPC-Ex elevated blood pH versus IPC-rest and SHAM (P ≤ .027), with no trial differences for blood potassium (P > .09) or cycling efficiency (P ≥ .24). Eight subjects anticipated IPC-Ex to be best for their performance. Four subjects favored SHAM. Conclusions: Performance in a 4-minute maximal test was better following IPC-Ex than IPC-rest and tended to be better than SHAM. The IPC procedures did not affect blood potassium, while pH was transiently elevated only by IPC-Ex. The performance-enhancing effect of IPC-Ex versus IPC-rest may be attributed to a placebo effect, improved pH regulation, and/or a change in the perception of effort.

D. Christiansen, Olsen, Kehler, Hansen, Jessen, and Bangsbo are with the Section of Integrative Physiology, Dept of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark. P. Christensen is with Team Danmark (Danish Elite Sport Organization), Copenhagen, Denmark.

D. Christiansen (danny@sportscience.dk) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Christensen PM, Shirai Y, Ritz C, Nordsborg NB. Caffeine and bicarbonate for speed. A meta-analysis of legal supplements potential for improving intense endurance exercise performance. Front Physiol. 2017;8:240. PubMed ID: 28536531 doi:10.3389/fphys.2017.00240

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Christensen PM, Bangsbo J. Warm-up strategy and high-intensity endurance performance in trained cyclists. Int J Sports Physiol Perform. 2015;10(3):353360. PubMed ID: 25229657 doi:10.1123/ijspp.2014-0228

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Incognito AV, Burr JF, Millar PJ. The effects of ischemic preconditioning on human exercise performance. Sports Med. 2016;46(4):531544. PubMed ID: 26645697 doi:10.1007/s40279-015-0433-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Cruz RS, de Aguiar RA, Turnes T, Salvador AF, Caputo F. Effects of ischemic preconditioning on short-duration cycling performance. Appl Physiol Nutr Metab. 2016;41(8):825831. PubMed ID: 27404398 doi:10.1139/apnm-2015-0646

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Griffin PJ, Ferguson RA, Gissane C, Bailey SJ, Patterson SD. Ischemic preconditioning enhances critical power during a 3 minute all-out cycling test. J Sports Sci. 2018;36(9):10381043. PubMed ID: 28686083 doi:10.1080/02640414.2017.1349923

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Kjeld T, Rasmussen MR, Jattu T, Nielsen HB, Secher NH. Ischemic preconditioning of one forearm enhances static and dynamic apnea. Med Sci Sports Exerc. 2014;46(1):151155. PubMed ID: 23846166 doi:10.1249/MSS.0b013e3182a4090a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Cocking S, Wilson MG, Nichols D, et al. Is there an optimal ischemic-preconditioning dose to improve cycling performance? Int J Sports Physiol Perform. 2018;13(3):274282. PubMed ID: 28657799 doi:10.1123/ijspp.2017-0114

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Wiggins CC, Constantini K, Paris HL, Mickleborough TD, Chapman RF. Ischemic preconditioning, O2 kinetics, and performance in normoxia and hypoxia. Med Sci Sports Exerc. 2019;51(5):900911. PubMed ID: 30601792 doi:10.1249/mss.0000000000001882

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Williams N, Russell M, Cook CJ, Kilduff LP. Effect of ischemic preconditioning on maximal swimming performance. J Strength Cond Res. 2021;35(1):221226. PubMed ID: 29389691 doi:10.1519/jsc.0000000000002485

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Turnes T, de Aguiar RA, de Oliveira Cruz RS, et al. Impact of ischaemia-reperfusion cycles during ischaemic preconditioning on 2000-m rowing ergometer performance. Eur J Appl Physiol. 2018;118(8):15991607. PubMed ID: 29796856 doi:10.1007/s00421-018-3891-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Slysz JT, Burr JF. Enhanced metabolic stress augments ischemic preconditioning for exercise performance. Front Physiol. 2018;9:1621. PubMed ID: 30498458 doi:10.3389/fphys.2018.01621

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Sabino-Carvalho JL, Lopes TR, Obeid-Freitas T, et al. Effect of ischemic preconditioning on endurance performance does not surpass placebo. Med Sci Sports Exerc. 2017;49(1):124132. PubMed ID: 27580156 doi:10.1249/mss.0000000000001088

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Asimakis GK, Inners-McBride K, Medellin G, Conti VR. Ischemic preconditioning attenuates acidosis and postischemic dysfunction in isolated rat heart. Am J Physiol Heart Circ Physiol. 1992;263(3):H887H894. doi:10.1152/ajpheart.1992.263.3.H887

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Elmoselhi AB, Lukas A, Ostadal P, Dhalla NS. Preconditioning attenuates ischemia-reperfusion-induced remodeling of Na+-K+-ATPase in hearts. Am J Physiol Heart Circ Physiol. 2003;285(3):H1055H1063. PubMed ID: 12763751 doi:10.1152/ajpheart.00865.2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Bailey TG, Jones H, Gregson W, Atkinson G, Cable NT, Thijssen DH. Effect of ischemic preconditioning on lactate accumulation and running performance. Med Sci Sports Exerc. 2012;44(11):20842089. PubMed ID: 22843115 doi:10.1249/MSS.0b013e318262cb17

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    McKenna MJ, Medved I, Goodman CA, et al. N-Acetylcysteine attenuates the decline in muscle Na+, K+-pump activity and delays fatigue during prolonged exercise in humans. J Physiol. 2006;576(pt 1):279288. PubMed ID: 16840514 doi:10.1113/jphysiol.2006.115352

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Christiansen D, Eibye KH, Rasmussen V, et al. Cycling with blood flow restriction improves performance and muscle K+ regulation and alters the effect of anti-oxidant infusion in humans. J Physiol. 2019;597(9):24212444. PubMed ID: 30843602 doi:10.1113/jp277657

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Christiansen D, Eibye K, Hostrup M, Bangsbo J. The effect of blood-flow-restricted interval training on lactate and H+ dynamics during dynamic exercise in man. Acta Physiol. 2021;231(3):e13580. doi:10.1111/apha.13580

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Larsson J, Bergstrom J. Electrolyte changes in muscle tissue and plasma in tourniquet-ischemia. Acta Chir Scand. 1978;144(2):6773. PubMed ID: 665104

  • 20.

    Christiansen D, Murphy RM, Bangsbo J, Stathis CG, Bishop DJ. Increased FXYD1 and PGC-1alpha mRNA after blood flow-restricted running is related to fibre type-specific AMPK signalling and oxidative stress in human muscle. Acta Physiol. 2018;223(2):e13045. doi:10.1111/apha.13045

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Mier CM, Alexander RP, Mageean AL. Achievement of VO2max criteria during a continuous graded exercise test and a verification stage performed by college athletes. J Strength Cond Res. 2012;26(10):26482654. PubMed ID: 22076102 doi:10.1519/JSC.0b013e31823f8de9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Péronnet F, Massicotte D. Table of nonprotein respiratory quotient: an update. Can J Sport Sci. 1991;16(1):2329. PubMed ID: 1645211

  • 23.

    Christensen PM, Bangsbo J. Influence of prior intense exercise and cold water immersion in recovery for performance and physiological response during subsequent exercise. Front Physiol. 2016;7:269. PubMed ID: 27445857 doi:10.3389/fphys.2016.00269

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Salvador AF, De Aguiar RA, Lisbôa FD, Pereira KL, Cruz RS, Caputo F. Ischemic preconditioning and exercise performance: a systematic review and meta-analysis. Int J Sports Physiol Perform. 2016;11(1):414. PubMed ID: 26218309 doi:10.1123/ijspp.2015-0204

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893

  • 26.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.

  • 27.

    McKenna MJ. The roles of ionic processes in muscular fatigue during intense exercise. Sports Med. 1992;13(2):134145. PubMed ID: 1373245

  • 28.

    McClung M, Collins D. “Because I know it will!”: placebo effects of an ergogenic aid on athletic performance. J Sport Exerc Psychol. 2007;29(3):382394. PubMed ID: 17876973 doi:10.1123/jsep.29.3.382

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Nielsen JJ, Mohr M, Klarskov C, et al. Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle. J Physiol. 2004;554(pt 3):857870. PubMed ID: 14634198 doi:10.1113/jphysiol.2003.050658

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Christiansen D. Molecular stressors underlying exercise training-induced improvements in K+ regulation during exercise and Na+, K+-ATPase adaptation in human skeletal muscle. Acta Physiol. 2018;225(3):e13196. doi:10.1111/apha.13196

    • Search Google Scholar
    • Export Citation
  • 31.

    Rotto DM, Kaufman MP. Effect of metabolic products of muscular contraction on discharge of group III and IV afferents. J Appl Physiol. 1988;64(6):23062313. PubMed ID: 3136123 doi:10.1152/jappl.1988.64.6.2306

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Amann M, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA. Opioid-mediated muscle afferents inhibit central motor drive and limit peripheral muscle fatigue development in humans. J Physiol. 2009;587(1):271283. PubMed ID: 19015193 doi:10.1113/jphysiol.2008.163303

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Akima H, Kinugasa R, Kuno S. Recruitment of the thigh muscles during sprint cycling by muscle functional magnetic resonance imaging. Int J Sports Med. 2005;26(4):245252. PubMed ID: 15795808 doi:10.1055/s-2004-821000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Tucker R. The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance. Br J Sports Med. 2009;43(6):392400. PubMed ID: 19224911 doi:10.1136/bjsm.2008.050799

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Doherty M, Smith PM. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis. Scand J Med Sci Sports. 2005;15(2):6978. PubMed ID: 15773860 doi:10.1111/j.1600-0838.2005.00445.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Hughes L, Patterson SD. The effect of blood flow restriction exercise on exercise-induced hypoalgesia and endogenous opioid and endocannabinoid mechanisms of pain modulation. J Appl Physiol. 2020;128(4):914924. PubMed ID: 32105522 doi:10.1152/japplphysiol.00768.2019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Cruz RS, de Aguiar RA, Turnes T, Pereira KL, Caputo F. Effects of ischemic preconditioning on maximal constant-load cycling performance. J Appl Physiol. 2015;119(9):961967. PubMed ID: 26359484 doi:10.1152/japplphysiol.00498.2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3399 1150 27
Full Text Views 105 67 3
PDF Downloads 109 57 5