Ambient Temperature and Field-Based Cycling Performance: Insights From Male and Female Professional Cyclists

in International Journal of Sports Physiology and Performance
Restricted access

Purpose: Ambient temperature affects endurance exercise performance. However, most research has been conducted in a laboratory-based setting, and whether there are sex-specific trends remains unclear. The present study aimed to analyze the influence of ambient temperature on cycling performance in male and female professional cyclists using field-based data collected during both training and racing. Methods: A total of 74 cyclists (48 male and 26 female; age 29 [5] y, 8 [5] y of experience in the professional category) were included in the analyses. We registered the participants’ record power profile using data from both training and competitions over 8 years (2013–2020; 8 [5] seasons per cyclist). We analyzed their mean maximal power (MMP) values attained for efforts lasting 5 seconds, 30 seconds, 5 minutes, and 20 minutes at ambient temperatures ranging from <5°C to >35°C. Results: A significant influence of ambient temperature on MMP values was found in male and female cyclists (P < .001 for both), with no significant differences between sexes (P = .512). Cyclists attained the highest MMP values at temperate conditions (10–30°C in males and 5–25°C in females), whereas an impairment in performance was found at colder and hotter temperatures, particularly for the more extreme conditions (performance impairment at <5°C and >35°C of −18% to −9% and −16% to −9%, respectively). Conclusions: Ambient temperature influences field-based cycling performance, following a reverse U-shaped relationship, with the highest MMP values attained in the range of ∼10°C to 25°C and with no major differences between sexes.

Valenzuela, Mateo-March, Lucia, and Barranco-Gil are with the Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain. Mateo-March is also with the Sport Science Dept, Universidad Miguel Hernández, Elche, Spain. Zabala is with the Faculty of Sport Sciences, Dept of Physical Education & Sport, University of Granada, Granada, Spain. Muriel and Pallarés are with the Human Performance and Sports Science Laboratory, Faculty of Sport Sciences, University of Murcia, Murcia, Spain. Valenzuela and Lucia are with the Grupo de Investigación en Actividad fiÌ sica y Salud (PaHerg), Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain.

Barranco-Gil (david.barranco@universidadeuropea.es) is corresponding author.
  • 1.

    Phillips KE, Hopkins WG. Determinants of cycling performance: a review of the dimensions and features regulating performance in elite cycling competitions. Sport Med Open. 2020;6(1):23. doi:10.1186/s40798-020-00252-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Périard JD, Eijsvogels TMH, Daanen HAM. Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies. Physiol Rev. 2021;101(4):18731979. PubMed ID: 33829868 doi:10.1152/physrev.00038.2020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Castellani J, Tipton M. Cold stress effects on exposure tolerance and exercise performance. Compr Physiol. 2016;6:443469. doi:10.1113/EP086283

    • Search Google Scholar
    • Export Citation
  • 4.

    Tatterson A, Hahn A, Martin D, et al. Effects of heat stress on physiological responses and exercise performance in elite cyclists. J Sci Med Sport. 2000;3(2):186193. PubMed ID: 11104310

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Gonzàlez-Alonso J, Teller C, Andersen SL, et al. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol. 1999;86(3):10321039. PubMed ID: 10066720 doi:10.1152/jappl.1999.86.3.1032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Peiffer JJ, Abbiss CR. Influence of environmental temperature on 40 km cycling time-trial performance. Int J Sports Physiol Perform. 2011;6(2):208220. PubMed ID: 21725106 doi:10.1123/ijspp.6.2.208

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    de Korte JQ, Bongers CCWG, Hopman MTE, et al. Exercise performance and thermoregulatory responses of elite athletes exercising in the heat: outcomes of the Thermo Tokyo Study. Sport Med. 2021;51(11):24232436. doi:10.1007/s40279-021-01530-w

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Borg DN, Stewart IB, Costello JT, et al. The impact of environmental temperature deception on perceived exertion during fixed-intensity exercise in the heat in trained-cyclists. Physiol Behav. 2018;194:333340. PubMed ID: 29933029 doi:10.1016/j.physbeh.2018.06.026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Galloway SDR, Maughan RJ. Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sports Exerc. 1997;29(9):12401249. PubMed ID: 9309637 doi:10.1097/00005768-199709000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Racinais S, Périard JD, Karlsen A, et al. Effect of heat and heat acclimatization on cycling time trial performance and pacing. Med Sci Sports Exerc. 2014;47(3):601606. doi:10.1249/MSS.0000000000000428

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Yanovich R, Ketko I, Charkoudian N. Sex differences in human thermoregulation: relevance for 2020 and beyond. Physiology. 2020;35(3):177184. PubMed ID: 32293229 doi:10.1152/physiol.00035.2019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Leo P, Spragg J, Podlogar T, et al. Power profiling and the power-duration relationship in cycling: a narrative review. Eur J Appl Physiol. 2022;122(2):301316. PubMed ID: 34708276 doi:10.1007/s00421-021-04833-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Passfield L, Hopker JG, Jobson S, et al. Knowledge is power: issues of measuring training and performance in cycling. J Sports Sci. 2017;35(14):14261434. PubMed ID: 27686573 doi:10.1080/02640414.2016.1215504

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Pinot J, Grappe F. The record power profile to assess performance in elite cyclists. Int J Sports Med. 2011;32(11):839844. PubMed ID: 22052032 doi:10.1055/s-0031-1279773

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Mateo-March M, Erp T Van, Muriel X, et al. The record power profile in professional female cyclists: normative values obtained from a large database [published online February 15, 2022]. Int J Sports Physiol Perform. doi:10.1123/ijspp.2021-0372.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Valenzuela PL, Muriel X, Van Erp T, et al. The record power profile of male professional cyclists: normative values obtained from a large database [published online March 3, 2022]. Int J Sports Physiol Perform. doi:10.1123/ijspp.2021-0403

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Mckay AKA, Stellingwerff T, Smith ES, et al. Defining training and performance caliber: a participant classification framework. Int J Sports Physiol Perform. 2022;17(2):317331. doi:10.1123/ijspp.2021-0451

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Miller MC, Macdermid PW, Fink PW, et al. Agreement between Powertap, Quarq and Stages power meters for cross-country mountain biking. Sport Technol. 2015;8(1–2):4450. doi:10.1080/19346182.2015.1108979

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Maier T, Schmid L, Müller B, et al. Accuracy of cycling power meters against a mathematical model of treadmill cycling. Int J Sports Med. 2017;38(6):456461. PubMed ID: 28482367 doi:10.1055/s-0043-102945

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    González-Alonso J, Mora-Rodríguez R, Coyle EF. Stroke volume during exercise: interaction of environment and hydration. Am J Physiol Heart Circ Physiol. 2000;278(2):H321H330. PubMed ID: 10666060 doi:10.1152/ajpheart.2000.278.2.h321

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Cheung SS. Interconnections between thermal perception and exercise capacity in the heat. Scand J Med Sci Sport. 2010;20(suppl 3):5359. doi:10.1111/j.1600-0838.2010.01209.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Patton J, Vogel J. Effects of acute cold exposure on submaximal endurance performance. Med Sci Sports Exerc. 1984;16(5):494497. PubMed ID: 6513768

  • 23.

    Sandsund M, Sue-Chu M, Helgerud J, et al. Effect of cold exposure (−15°C) and Salbutamol treatment on physical performance in elite nonasthmatic cross-country skiers. Eur J Appl Physiol Occup Physiol. 1998;77(4):297304. PubMed ID: 9562357 doi:10.1007/s004210050337

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Wickham KA, McCarthy DG, Spriet LL, et al. Sex differences in the physiological responses to exercise-induced dehydration: consequences and mechanisms. J Appl Physiol. 2021;131(2):504510. PubMed ID: 34197234 doi:10.1152/japplphysiol.00266.2021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Mora-Rodríguez R. Influence of aerobic fitness on thermoregulation during exercise in the heat. Exerc Sport Sci Rev. 2012;40(2):7987. PubMed ID: 22205388

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Cheung SS, McLellan TM. Heat acclimation, aerobic fitness, and hydration effects on tolerance during uncompensable heat stress. J Appl Physiol. 1998;84(5):17311739. PubMed ID: 9572824 doi:10.1152/jappl.1998.84.5.1731

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    González-Alonso J, Mora-Rodríguez R, Below PR, et al. Dehydration markedly impairs cardiovascular function in hyperthermic endurance athletes during exercise. J Appl Physiol. 1997;82(4):12291236. PubMed ID: 9104860 doi:10.1152/jappl.1997.82.4.1229

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Che Muhamed AM, Atkins K, Stannard SR, et al. The effects of a systematic increase in relative humidity on thermoregulatory and circulatory responses during prolonged running exercise in the heat. Temperature. 2016;3(3):455464. doi:10.1080/23328940.2016.1182669

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Garvican-Lewis LA, Clark B, Martin DT, et al. Impact of altitude on power output during cycling stage racing. PLoS One. 2015;10(12):115. doi:10.1371/journal.pone.0143028

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 994 994 183
Full Text Views 38 38 4
PDF Downloads 59 59 6