Strength and Athletic Adaptations Produced by 4 Programming Models: A Velocity-Based Intervention Using a Real-Context Routine

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Alejandro Martínez-CavaHuman Performance and Sport Science Laboratory, Faculty of Sport Sciences, University of Murcia, Murcia, Spain

Search for other papers by Alejandro Martínez-Cava in
Current site
Google Scholar
PubMed
Close
,
Alejandro Hernández-BelmonteHuman Performance and Sport Science Laboratory, Faculty of Sport Sciences, University of Murcia, Murcia, Spain

Search for other papers by Alejandro Hernández-Belmonte in
Current site
Google Scholar
PubMed
Close
, and
Jesús G. PallarésHuman Performance and Sport Science Laboratory, Faculty of Sport Sciences, University of Murcia, Murcia, Spain

Search for other papers by Jesús G. Pallarés in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Purpose: To compare the strength and athletic adaptations induced by 4 programming models. Methods: Fifty-two men were allocated into 1 of the following models: linear programming (intensity increased while intraset volume decreased), undulating programming (intensity and intraset volume were varied in each session or set of sessions), reverse programming (intensity decreased while intraset volume increased), or constant programming (intensity and intraset volume kept constant throughout the training plan). All groups completed a 10-week resistance-training program made up of the free-weight bench press, squat, deadlift, prone bench pull, and shoulder press exercises. The 4 models used the same frequency (2 sessions per week), number of sets (3 per exercise), interset recoveries (4 min), and average intensity throughout the intervention (77.5%). The velocity-based method was used to accurately adjust the planned intensity for each model. Results: The 4 programming models exhibited significant pre–post changes in most strength variables analyzed. When considering the effect sizes for the 5 exercises trained, we observed that the undulating programming (mean effect size = 0.88–2.92) and constant programming (mean effect size = 0.61–1.65) models induced the highest and lowest strength enhancements, respectively. Moreover, the 4 programming models were found to be effective to improve performance during shorter (jump and sprint tests) and longer (upper- and lower-limb Wingate test) anaerobic tasks, with no significant differences between them. Conclusion: The linear, undulating, reverse, and constant programming models are similarly effective to improve strength and athletic performance when they are implemented in a real-context routine.

  • Collapse
  • Expand
  • 1.

    Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc. 2004;36(4):674688. PubMed ID: 15064596 doi:10.1249/01.MSS.0000121945.36635.61

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Cunanan AJ, DeWeese BH, Wagle JP, et al. The general adaptation syndrome: a foundation for the concept of periodization. Sports Med. 2018;48(4):787797. doi:10.1007/s40279-017-0855-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Riscart-López J, Rendeiro-Pinho G, Mil-Homens P, et al. Effects of four different velocity-based training programming models on strength gains and physical performance. J Strength Cond Res. 2021;35(3):596603. PubMed ID: 33394894 doi:10.1519/JSC.0000000000003934

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Rodríguez-Rosell D, Martínez-Cava A, Yáñez-García JM, et al. Linear programming produces greater, earlier and uninterrupted neuromuscular and functional adaptations than daily-undulating programming after velocity-based resistance training. Physiol Behav. 2021;233:113337. PubMed ID: 33493544 doi:10.1016/j.physbeh.2021.113337

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Evans JW. Periodized resistance training for enhancing skeletal muscle hypertrophy and strength: a mini-review. Front Physiol. 2019;10:13. PubMed ID: 30728780 doi:10.3389/fphys.2019.00013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Rhea MR, Alderman BL. A meta-analysis of periodized versus nonperiodized strength and power training programs. Res Q Exerc Sport. 2004;75(4):413422. PubMed ID: 15673040 doi:10.1080/02701367.2004.10609174

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Williams TD, Tolusso DV, Fedewa MV, Esco MR. Comparison of periodized and non-periodized resistance training on maximal strength: a meta-analysis. Sports Med. 2017;47(10):20832100. PubMed ID: 28497285 doi:10.1007/s40279-017-0734-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Harries SK, Lubans DR, Callister R. Systematic review and meta-analysis of linear and undulating periodized resistance training programs on muscular strength. J Strength Cond Res. 2015;29(4):11131125. PubMed ID: 25268290 doi:10.1519/JSC.0000000000000712

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Caldas LC, Guimarães-Ferreira L, Duncan MJ, et al. Traditional vs. undulating periodization in the context of muscular strength and hypertrophy: a meta-analysis. Int J Sports Sci. 2016;6:219229.

    • Search Google Scholar
    • Export Citation
  • 10.

    Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005;35(4):339361. PubMed ID: 15831061 doi:10.2165/00007256-200535040-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Pallarés JG, López-Samanes A, Fernández-Elías VE, et al. Pseudoephedrine and circadian rhythm interaction on neuromuscular performance. Scand J Med Sci Sports. 2015;25(6):e603e612. PubMed ID: 25515692 doi:10.1111/sms.12385

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Hernández-Belmonte A, Martínez-Cava A, Morán-Navarro R, Courel-Ibáñez J, Pallarés JG. A comprehensive analysis of the velocity-based method in the shoulder press exercise: stability of the load-velocity relationship and sticking region parameters. Biol Sport. 2020;38(2):235243. PubMed ID: 34079168 doi:10.5114/biolsport.2020.98453

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Courel-Ibáñez J, Martínez-Cava A, Morán-Navarro R, et al. Reproducibility and repeatability of five different technologies for bar velocity measurement in resistance training. Ann Biomed Eng. 2019;47(7):15231538. PubMed ID: 30980292 doi:10.1007/s10439-019-02265-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Martínez-Cava A, Hernández-Belmonte A, Courel-Ibáñez J, Morán-Navarro R, González-Badillo JJ, Pallarés JG. Reliability of technologies to measure the barbell velocity: implications for monitoring resistance training. PLoS One. 2020;15(6):e0232465. PubMed ID: 32520952 doi:10.1371/journal.pone.0232465

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Martínez-Cava A, Hernández-Belmonte A, Courel-Ibáñez J, Conesa-Ros E, Morán-Navarro R, Pallarés JG. Effect of pause versus rebound techniques on neuromuscular and functional performance after a prolonged velocity-based training. Int J Sports Physiol Perform. 2021;16(7):927933. PubMed ID: 33561819 doi:10.1123/ijspp.2020-0348

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Janicijevic D, Knezevic OM, Mirkov DM, et al. The force–velocity relationship obtained during the squat jump exercise is meaningfully influenced by the initial knee angle. Sports Biomech. Published online March 30, 2020. doi:10.1080/14763141.2020.1727559

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bar-Or O. The Wingate anaerobic test. An update on methodology, reliability and validity. Sports Med. 1987;4(6):381394. PubMed ID: 3324256 doi:10.2165/00007256-198704060-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Rodríguez-Rielves V, Martínez-Cava A, Buendía-Romero A, et al. Reproducibility of the Rotor 2INpower Crankset for monitoring cycling power output: a comprehensive analysis in different real-context situations. Int J Sports Physiol Perform. 2021;17(1):120125. PubMed ID: 34186508 doi:10.1123/ijspp.2021-0137

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hernández-Belmonte A, Buendía-Romero A, Martínez-Cava A, Courel-Ibáñez J, Mora-Rodríguez R, Pallarés JG. Wingate test, when time and overdue fatigue matter: validity and sensitivity of two time-shortened versions. Appl Sci. 2020;10(22):8002. doi:10.3390/app10228002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Hernández-Belmonte A, Courel-Ibáñez J, Conesa-Ros E, Martínez-Cava A, Pallarés J. Level of effort: a reliable and practical alternative to the velocity-based approach for monitoring resistance training. J Strength Cond Res. Published online May 20, 2021. doi:10.1519/jsc.0000000000004060

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Pareja-Blanco F, Alcazar J, Sánchez-Valdepeñas J, et al. Velocity loss as a critical variable determining the adaptations to strength training. Med Sci Sports Exerc. 2020;52(8):17521762. PubMed ID: 32049887 doi:10.1249/MSS.0000000000002295

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Pareja-Blanco F, Alcazar J, Cornejo-Daza PJ, et al. Effects of velocity loss in the bench press exercise on strength gains, neuromuscular adaptations, and muscle hypertrophy. Scand J Med Sci Sports. 2020;30:21542166. PubMed ID: 32681665

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Sánchez-Medina L, González-Badillo J, Pérez C, Pallarés JG. Velocity- and power-load relationships of the bench pull vs. bench press exercises. Int J Sports Med. 2014;35:209216. PubMed ID: 23900903

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Sánchez-Medina L, Pallarés JG, Pérez C, Morán-Navarro R, González-Badillo JJ. Estimation of relative load from bar velocity in the full back squat exercise. Sport Med Int Open. 2017;1(2):e80e88. doi:10.1055/s-0043-102933

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Morán-Navarro R, Martínez-Cava A, Escribano-Peñas P, Courel-Ibáñez J. Load-velocity relationship of the deadlift exercise. Eur J Sport Sci. 2021;21(5):678684. PubMed ID: 32552373 doi:10.1080/17461391.2020.1785017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Martínez-Cava A, Hernández-Belmonte A, Courel-Ibáñez J, Morán-Navarro R, González-Badillo JJ, Pallarés JG. Bench press at full range of motion produces greater neuromuscular adaptations than partial executions after prolonged resistance training. J Strength Cond Res. 2019;36(1):1015. doi:10.1519/JSC.0000000000003391

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Pallarés JG, Hernández-Belmonte A, Martínez-Cava A, Vetrovsky T, Steffl M, Courel-Ibáñez J. Effects of range of motion on resistance training adaptations: a systematic review and meta-analysis. Scand J Med Sci Sports. 2021;31(10):18661881. PubMed ID: 34170576 doi:10.1111/sms.14006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    González-Badillo JJ, Rodríguez-Rosell D, Sánchez-Medina L, Gorostiaga EM, Pareja-Blanco F. Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training. Eur J Sport Sci. 2014;14(8):772781. PubMed ID: 24734902 doi:10.1080/17461391.2014.905987

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, Gorostiaga EM, González-Badillo JJ. Effect of movement velocity during resistance training on neuromuscular performance. Int J Sports Med. 2014;35(11):916924. PubMed ID: 24886926 doi:10.1055/s-0033-1363985

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Hedges LV. Distribution theory for Glass’s estimator of effect size and related estimators. J Educ Stat. 1981;6(2):107128. doi:10.3102/10769986006002107

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Lawton TW, Cronin JB, McGuigan MR. Strength testing and training of rowers: a review. Sports Med. 2011;41(5):413432. PubMed ID: 21510717 doi:10.2165/11588540-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Pallarés JG, Sánchez-Medina L, Carrasco L, Díaz A, Izquierdo M. Endurance and neuromuscular changes in world-class level kayakers during a periodized training cycle. Eur J Appl Physiol. 2009;106(4):629638. doi:10.1007/s00421-009-1061-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Iglesias-Soler E, Rial-Vázquez J, Boullosa D, et al. Load-velocity profiles change after training programs with different set configurations. Int J Sports Med. 2021;42(9):794802. PubMed ID: 33352601 doi:10.1055/a-1323-3456

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2480 2481 172
Full Text Views 65 65 3
PDF Downloads 109 109 5