Marathon Performance and Pacing in the Doha 2019 Women’s IAAF World Championships: Extreme Heat, Suboptimal Pacing, and High Failure Rates

in International Journal of Sports Physiology and Performance
View More View Less
  • 1 Department of Sport, Health and Nutrition, Leeds Trinity University, Horsforth, Leeds, United Kingdom
  • | 2 School of Sport, Health and Exercise Sciences, University of Portsmouth, Portsmouth, United Kingdom
Restricted access

Purpose: The Doha 2019 women’s World Championship marathon took place in extreme hot (32 °C), humid conditions (74% relative humidity) culminating in unprecedented (41%) failure rates. We explored whether extreme heat or suboptimal pacing was responsible for diminished performance against a temperate “control” (London 2017: 19 °C, 59% relative humidity) and whether physical characteristics (eg, body surface area, estimated maximal oxygen uptake, habitual heat exposure) explained performance. Method: Five-kilometer-pace (km·h−1) data underwent repeated-measures analyses of hot (Doha, n = 40) versus temperate pacing and performance (London, n = 78) within and between marathon pacing (finisher quartiles normalized against personal best; n = 10 per group) and within hot marathon finishers versus nonfinishers (up to 10 km; normalized data). Possible predictors (multiple regression) of hot marathon pacing were explored. Tests to .05 alpha level, partial eta squared (ηp2) indicates effect size. Results: Mean (SD) of Doha (14.82 [0.96] km·h−1) pace was slower (London: 15.74 [0.96] km·h−1; P = .00; ηp2=.500). In hot conditions, athletes finishing in positions 1 to 10 (group 1) started more conservatively (93.7% [2.1%] of personal best) than slower runners (groups 3 and 4; 96.6% [2.8%] of personal best; P < .05, ηp2=.303). Groups were not different at 15 km and then slowed immediately (groups 3 and 4) or after 20 km (group 2). Finishers and nonfinishers adopted similar pace up to 10 km (P > .05, ηp2=.003). World ranking predicted (P = .00; r2 = .248) average pace in Doha. Conclusion: Extreme hot conditions reduced performance. Top 10 athletes adopted a conservative initial pace, whereas lower-placing athletes adopted a faster, aggressive start. Pacing alone does not explain high failure rates in nonfinishers. Athletes competing in the heat should initially pace conservatively to optimize performance.

Barwood (M.Barwood@leedstrinity.ac.uk) is corresponding author.

  • 1.

    Racinais S, Ihsan M, Taylor L, et al. Hydration and cooling in elite athletes: relationship with performance, body mass loss and body temperatures during the Doha 2019 IAAF World Athletics Championships. Br J Sports Med. 2021;55(23):13351341. PubMed ID: 33579722 doi:10.1136/bjsports-2020-103613

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Bermon S, Adami PE. Meteorological risks in Doha 2019 Athletics World Championships: health considerations from organizers. Front Sport Active Liv. 2019;1:58. doi:10.3389/fspor.2019.00058

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Racinais S, Casa D, Brocherie F, Ihsan M. Translating science into practice: the perspective of the Doha 2019 IAAF World Championships in the heat. Front Sports Act Living. 2019;1:39. PubMed ID: 33344962 doi:10.3389/fspor.2019.00039

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Périard JD, Racinais S, Sawka MN. Adaptations and mechanisms of human heat acclimation: applications for competitive athletes and sports. Scand J Med Sci Sports. 2015;25:2038. doi:10.1111/sms.12408

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Maughan RJ. Food and fluid intake during exercise. Can J Appl Physiol. 2001;26(suppl 1):S71S78. PubMed ID: 11897885 doi:10.1139/h2001-044

  • 6.

    Minett GM, Duffield R, Marino FE, Portus M. Duration-dependant response of mixed-method pre-cooling for intermittent-sprint exercise in the heat. Eur J Appl Physiol. 2012;112(10):36553666. PubMed ID: 22350357 doi:10.1007/s00421-012-2348-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Foster C, deKoning JJ, Hettinga F, et al. Effect of competitive distance on energy expenditure during simulated competition. Int J Sports Med. 2004;09(3):198200. PubMed ID: 15088244 doi:10.1055/s-2007-1025005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Schlader ZJ, Stannard SR, Mündel T. Exercise and heat stress: performance, fatigue and exhaustion—A hot topic. Br J Sports Med. 2011;45(1):35. PubMed ID: 19846428 doi:10.1136/bjsm.2009.063024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Corbett J, White DK, Barwood MJ, et al. The effect of head-to-head competition on behavioural thermoregulation, thermophysiological strain and performance during exercise in the heat. Sports Med. 2018;48(5):12691279. PubMed ID: 29147922 doi:10.1007/s40279-017-0816-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Foster C. Pattern of developing the performance template. Br J Sports Med. 2009;43(10):765769. PubMed ID: 19124526 doi:10.1136/bjsm.2008.054841

  • 11.

    Schmit C, Duffield R, Hausswirth C, Coutts AJ, Le Meur Y. Pacing adjustments associated with familiarization: heat versus temperate environments. Int J Sports Physiol Perf. 2016;11(7):855860. doi:10.1123/ijspp.2015-0572

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Cheung SS, McLellan TM. Heat acclimation, aerobic fitness, and hydration effects on tolerance during uncompensable heat stress. J Appl Physiol. 1998;84(5):17311739. PubMed ID: 9572824 doi:10.1152/jappl.1998.84.5.1731

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Alkemade P, Gerrett N, Eijsvogels TMH, Daanen HAM. Individual characteristics associated with the magnitude of heat acclimation adaptations. Eur J Appl Physiol. 2021;121(6):15931606. PubMed ID: 33646425 doi:10.1007/s00421-021-04626-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Corbett J, Wright J, Tipton MJ. Sex differences in response to exercise heat stress in the context of the military environment. BMJ Mil Health. Published online ahead of print February 23, 2020.  PubMed ID: 32094215 doi:10.1136/jramc-2019-001253

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Havenith G, Coenen JM, Kistemaker L, Kenney WL. Relevance of individual characteristics for human heat stress response is dependent on exercise intensity and climate type. Eur J Appl Physiol Occ Physiol. 1998;77(3):231241. doi:10.1007/s004210050327

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Périard JD, Racinais S, Timpka T, et al. Strategies and factors associated with preparing for competing in the heat: a cohort study at the 2015 IAAF World Athletics Championships. Br J Sports Med. 2017;51(4):264270. PubMed ID: 27815238 doi:10.1136/bjsports-2016-096579

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Tyler C, Reeve T, Hodges G, Cheung S. The effects of heat adaptation on physiology, perception and exercise performance in the heat: a meta-analysis. Sports Med. 2016;46(11):16991724. PubMed ID: 27106556 doi:10.1007/s40279-016-0538-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Key FM, Abdul-Aziz MA, Mundry R, et al. Human local adaptation of the TRPM8 cold receptor along a latitudinal cline. PLoS Genetics. 2018;14(5):e1007298. PubMed ID: 29723195 doi:10.1371/journal.pgen.1007298

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Championships IW. Race Analysis—Marathon Women Final London 2017 London: IAAF. Published 2017. https://media.aws.iaaf.org/competitiondocuments/pdf/5151/AT-MAR-W-f--1--.RS5.pdf?v=-2084497174.

    • Search Google Scholar
    • Export Citation
  • 20.

    Championships IW. Race Analysis—Women Final Doha 2019 Doha: IAAF. Published 2019. https://media.aws.iaaf.org/competitiondocuments/pdf/5151/AT-MAR-W-f--1--.RS5.pdf?v=-2084497174.

    • Search Google Scholar
    • Export Citation
  • 21.

    Du Bois D, Du Bois EF. A formula to estimate the approximate surface area if height and weight be known 1916. Nutrition. 1989;5(5):303311. PubMed ID: 2520314

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Daniels J. Daniels’ Running Formula. 2nd ed. Champaign, IL: Human Kinetics; 2005.

  • 23.

    Ely MR, Cheuvront SN, Roberts WO, Montain SJ. Impact of weather on marathon-running performance. Med Sci Sport Exerc. 2007;39(3):487493. doi:10.1249/mss.0b013e31802d3aba.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Ely MR, Martin DE, Cheuvront SN, Montain SJ. Effect of ambient temperature on marathon pacing is dependent on runner ability. Med Sci Sports Exerc. 2008;40(9):16751680. PubMed ID: 18685522 doi:10.1249/MSS.0b013e3181788da9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Nybo L, Rasmussen P, Sawka MN. Performance in the heat-physiological factors of importance for hyperthermia-induced fatigue. Compr Physiol. 2014;4(2):657689. PubMed ID: 24715563

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Díaz JJ, Fernández-Ozcorta EJ, Torres M, Santos-Concejero J. Men vs. women world marathon records’ pacing strategies from 1998 to 2018. Eur J Sport Sci. 2019;19(10):12971302. PubMed ID: 30922191 doi:10.1080/17461391.2019.1596165

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Montain SJ, Ely MR, Cheuvront SN. Marathon performance in thermally stressing conditions. Sports Med. 2007;37(4–5):320323. PubMed ID: 17465598 doi:10.2165/00007256-200737040-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Tucker R, Rauch L, Harley YX, Noakes TD. Impaired exercise performance in the heat is associated with an anticipatory reduction in skeletal muscle recruitment. Pflugers Arch. 2004;448(4):422430. PubMed ID: 15138825 doi:10.1007/s00424-004-1267-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    McMorris T, Barwood M, Corbett J. Central fatigue theory and endurance exercise: toward an interoceptive model. Neurosci Biobehav Rev. 2018;93:93107. PubMed ID: 29608992 doi:10.1016/j.neubiorev.2018.03.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 563 563 126
Full Text Views 20 20 5
PDF Downloads 33 33 5