Differences in Performance Assessments Conducted Indoors and Outdoors in Professional Cyclists

Click name to view affiliation

Elliot S. Lipski Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands

Search for other papers by Elliot S. Lipski in
Current site
Google Scholar
PubMed
Close
*
,
David J. Spindler Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands

Search for other papers by David J. Spindler in
Current site
Google Scholar
PubMed
Close
,
Matthijs K.C. Hesselink Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands

Search for other papers by Matthijs K.C. Hesselink in
Current site
Google Scholar
PubMed
Close
,
Tony D. Myers Department of Sport and Health, Newman University, Birmingham, United Kingdom

Search for other papers by Tony D. Myers in
Current site
Google Scholar
PubMed
Close
, and
Dajo Sanders Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands

Search for other papers by Dajo Sanders in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: The purpose of this study was to assess the relationship between typical performance tests among elite and professional cyclists when conducted indoors and outdoors. Methods: Fourteen male cyclists of either UCI (Union Cycliste Internationale) Continental or UCI World Tour level (mean [SD] age 20.9 [2.8] y, mass 68.13 [7.25] kg) were recruited to participate in 4 test sessions (2 indoors and 2 outdoors) within a 14-day period, consisting of maximum mean power testing for durations of 60, 180, 300, and 840 seconds. Results: Across all maximum mean power test durations, the trimmed mean power was higher outdoors compared with indoor testing (P < .05). Critical power was higher outdoors compared with indoors (+19 W, P = .005), while no difference was observed for the work capacity above critical power. Self-selected cadence was 6 rpm higher indoors versus outdoors for test durations of 60 (P = .038) and 300 seconds (P = .002). Conclusions: These findings suggest that maximal power testing in indoor and outdoor settings cannot be used interchangeably. Furthermore, there was substantial individual variation in the difference between indoor and outdoor maximum mean powers across all time durations, further highlighting the difficulty of translating results from indoor testing to outdoor on an individual level in elite populations.

  • Collapse
  • Expand
  • 1.

    Jeukendrup AE, Craig NP, Hawley JA. The bioenergetics of world class cycling. J Sci Med Sport. 2000;3(4):414433. PubMed ID: 11235007 doi:10.1016/S1440-2440(00)80008-0

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Karsten B, Jobson S, Hopker J, Jimenez A, Beedie C. High agreement between laboratory and field estimates of critical power in cycling. Int J Sports Med. 2013;35(4):298303. PubMed ID: 24022574 doi:10.1055/s-0033-1349844

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Coyle EF, Feltner ME, Kautz SA, et al. Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc. 1991;23(1):93107. PubMed ID: 1997818

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Jones AM, Carter H. The effect of endurance training on parameters of aerobic fitness. Sports Med. 2000;29(6):373386. PubMed ID: 10870864 doi:10.2165/00007256-200029060-00001

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Jones AM, Wilkerson DP, DiMenna F, Fulford J, Poole DC. Muscle metabolic responses to exercise above and below the “critical power” assessed using 31P-MRS. Am J Physiol Regul Integr Comp Physiol. 2008;294(2):R585R593. PubMed ID: 18056980 doi:10.1152/ajpregu.00731.2007

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Sanders D, Heijboer M, Akubat I, Meijer K, Hesselink MK. Predicting high-power performance in professional cyclists. Int J Sports Physiol Perform. 2017;12(3):410413. PubMed ID: 27248365 doi:10.1123/ijspp.2016-0134

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Abbiss CR, Menaspà P, Villerius V, Martin DT. Distribution of power output when establishing a breakaway in cycling. Int J Sports Physiol Perform. 2013;8(4):452455. PubMed ID: 23539668 doi:10.1123/ijspp.8.4.452

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Sanders D, Heijboer M. Physical demands and power profile of different stage types within a cycling grand tour. Eur J Sport Sci. 2019;19(6):736744. PubMed ID: 30589390 doi:10.1080/17461391.2018.1554706

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Pinot J, Grappe F. The record power profile to assess performance in elite cyclists. Int J Sports Med. 2011;32(11):839844. PubMed ID: 22052032 doi:10.1055/s-0031-1279773

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Lucía A, Pardo J, Durántez A, Hoyos J, Chicharro J. Physiological differences between professional and elite road cyclists. Int J Sports Med. 1998;19(5):342348. doi:10.1055/s-2007-971928

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Nimmerichter A, Williams C, Bachl N, Eston R. Evaluation of a field test to assess performance in elite cyclists. Int J Sports Med. 2010;31(3):160166. doi:10.1055/s-0029-1243222

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Chorley A, Lamb KL. The application of critical power, the work capacity above critical power (W′), and its reconstitution: a narrative review of current evidence and implications for cycling training prescription. Sports. 2020;8(9):123. doi:10.3390/sports8090123

    • Search Google Scholar
    • Export Citation
  • 13.

    Sassi A, Marcora SM, Rampinini E, Mognoni P, Impellizzeri FM. Prediction of time to exhaustion from blood lactate response during submaximal exercise in competitive cyclists. Eur J Appl Physiol. 2006;97(2):174180. PubMed ID: 16525812 doi:10.1007/s00421-006-0157-1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Quod MJ, Martin DT, Martin JC, Laursen PB. The power profile predicts road cycling MMP. Int J Sports Med. 2010;31(6):397401. doi:10.1055/s-0030-1247528

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Leo P, Spragg J, Mujika I, Menz V, Lawley JS. Power profiling in U23 professional cyclists during a competitive season. Int J Sports Physiol Perform. 2021;19(6):881889.

    • Search Google Scholar
    • Export Citation
  • 16.

    Bertucci W, Grappe F, Groslambert A. Laboratory versus outdoor cycling conditions: differences in pedaling biomechanics. J Appl Biomech. 2007;23(2):8792. PubMed ID: 17603128 doi:10.1123/jab.23.2.87

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Triska C, Tschan H, Tazreiter G, Nimmerichter A. Critical power in laboratory and field conditions using single-visit maximal effort trials. Int J Sports Med. 2015;36(13):10631068. PubMed ID: 26258826 doi:10.1055/s-0035-1549958

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Jeukendrup A, Saris WHM, Brouns F, Kester ADM. A new validated endurance performance test: Med Sci Sports Exerc. 1996;28(2):266270. PubMed ID: 8775164 doi:10.1097/00005768-199602000-00017

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Capostagno B, Lambert MI, Lamberts RP. A systematic review of submaximal cycle tests to predict, monitor, and optimize cycling performance. Int J Sports Physiol Perform. 2016;11(6):707714. PubMed ID: 27701968 doi:10.1123/ijspp.2016-0174

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Lamberts RP, Swart J, Noakes TD, Lambert MI. A novel submaximal cycle test to monitor fatigue and predict cycling performance. Br J Sports Med. 2011;45(10):797804. PubMed ID: 19622525 doi:10.1136/bjsm.2009.061325

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Wilcox RR. Fundamentals of Modern Statistical Methods. 2nd ed. Springer-Verlag; 2010.

  • 22.

    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995;57(1):289300. doi:10.1111/j.2517-6161.1995.tb02031.x

    • Search Google Scholar
    • Export Citation
  • 23.

    Algina J, Keselman HJ, Penfield RD. An alternative to Cohen’s standardized mean difference effect size: a robust parameter and confidence interval in the two independent groups case. Psychol Methods. 2005;10(3):317328. PubMed ID: 16221031 doi:10.1037/1082-989X.10.3.317

    • Search Google Scholar
    • Export Citation
  • 24.

    Greenland S. Valid P-values behave exactly as they should: some misleading criticisms of P-values and their resolution with S-values. Am Stat. 2019;73(suppl 1):106114. doi:10.1080/00031305.2018.1529625

    • Search Google Scholar
    • Export Citation
  • 25.

    Foss Ø, Hallén J. Cadence and performance in elite cyclists. Eur J Appl Physiol. 2005;93(4):453462. PubMed ID: 15503124 doi:10.1007/s00421-004-1226-y

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Leirdal S, Ettema G. Freely chosen pedal rate during free cycling on a roller and ergometer cycling. Eur J Appl Physiol. 2009;106(6):799805. PubMed ID: 19466445 doi:10.1007/s00421-009-1087-5

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Lepers R, Hausswirth C, Maffiuletti N, Brisswalter J, Van Hoecke J. Evidence of neuromuscular fatigue after prolonged cycling exercise: Med Sci Sports Exerc. 2000;32(11):18801886. PubMed ID: 11079517 doi:10.1097/00005768-200011000-00010

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Rodríguez-Marroyo JA, García-Lopez J, Villa JG, Córdova A. Adaptation of pedalling rate of professional cyclist in mountain passes. Eur J Appl Physiol. 2008;103(5):515522. PubMed ID: 18425530 doi:10.1007/s00421-008-0745-3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Fregly BJ. Crank inertial load has little effect on steady-state pedaling coordination. J Biomech. 1996;29(12):15591567. PubMed ID: 8945654

  • 30.

    Bertucci WM, Betik AC, Duc S, Grappe F. Gross efficiency and cycling economy are higher in the field as compared with on an axiom stationary ergometer. J Appl Biomech. 2012;28(6):636644. PubMed ID: 22694978 doi:10.1123/jab.28.6.636

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3779 895 57
Full Text Views 219 116 0
PDF Downloads 209 38 0