The Impact of Sleep Inertia on Physical, Cognitive, and Subjective Performance Following a 1- or 2-Hour Afternoon Nap in Semiprofessional Athletes

Click name to view affiliation

Georgia Romyn Appleton Institute for Behavioural Science, Central Queensland University, Adelaide, Australia
Department of Physiology, Australian Institute of Sport, Canberra, Australia

Search for other papers by Georgia Romyn in
Current site
Google Scholar
PubMed
Close
,
Gregory D. Roach Appleton Institute for Behavioural Science, Central Queensland University, Adelaide, Australia

Search for other papers by Gregory D. Roach in
Current site
Google Scholar
PubMed
Close
,
Michele Lastella Appleton Institute for Behavioural Science, Central Queensland University, Adelaide, Australia

Search for other papers by Michele Lastella in
Current site
Google Scholar
PubMed
Close
,
Dean J. Miller Appleton Institute for Behavioural Science, Central Queensland University, Adelaide, Australia

Search for other papers by Dean J. Miller in
Current site
Google Scholar
PubMed
Close
,
Nathan G. Versey Rowing Australia, Canberra, Australia

Search for other papers by Nathan G. Versey in
Current site
Google Scholar
PubMed
Close
, and
Charli Sargent Appleton Institute for Behavioural Science, Central Queensland University, Adelaide, Australia

Search for other papers by Charli Sargent in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Purpose: This study examined the impact of sleep inertia on physical, cognitive, and subjective performance immediately after a 1- or 2-hour afternoon nap opportunity. Methods: Twelve well-trained male athletes completed 3 conditions in a randomized, counterbalanced order—9 hours in bed overnight without a nap opportunity the next day (9 + 0), 8 hours in bed overnight with a 1-hour nap opportunity the next day (8 + 1), and 7 hours in bed overnight with a 2-hour nap opportunity the next day (7 + 2). Nap opportunities ended at 4:00 PM. Sleep was assessed using polysomnography. Following each condition, participants completed four 30-minute test batteries beginning at 4:15, 4:45, 5:15, and 5:45 PM. Test batteries included a warm-up, self-ratings of readiness to perform, motivation to perform and expected performance, two 10-m sprints, 2 agility tests, a 90-second response-time task, and 5 minutes of seated rest. Results: Total sleep time was not different between conditions (P = .920). There was an effect of condition on readiness (P < .001), motivation (P = .001), and expected performance (P = .004)—all 3 were lower in the 8 + 1 and 7 + 2 conditions compared with the 9 + 0 condition. There was no effect of condition on response time (P = .958), sprint time (P = .204), or agility (P = .240), but a large effect size was observed for agility. Conclusions: After waking from a nap opportunity, agility may be reduced, and athletes may feel sleepy and not ready or motivated to perform. Athletes should schedule sufficient time (∼1 h) after waking from a nap opportunity to avoid the effects of sleep inertia on performance.

Sargent (charli.sargent@cqu.edu.au) is corresponding author.

  • Collapse
  • Expand
  • 1.

    Sargent C, Lastella M, Halson SL, Roach GD. How much sleep does an elite athlete need? Int J Sports Physiol Perf. 2021;16(12):17461757. doi:10.1123/ijspp.2020-0896

    • Search Google Scholar
    • Export Citation
  • 2.

    Roberts SSH, Toe WP, Warminton SA. Effects of training and competition on the sleep of elite athletes: a systematic review and meta-analysis. Br J Sports Med. 2019;53(8):513522. PubMed ID: 30217831 doi:10.1136/bjsports-2018-099322

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Lastella M, Roach GD, Halson SL, Sargent C. Sleep/wake behaviours of elite athletes from individual and team sports. Eur J Sport Sci. 2015;15(2):94100. PubMed ID: 24993935 doi:10.1080/17461391.2014.932016

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Sargent C, Lastella M, Halson S, Roach GD. The impact of training schedules on the sleep and fatigue of elite athletes. Chronobiol Int. 2014;31(10):11601168. PubMed ID: 25222347 doi:10.3109/07420528.2014.957306

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Van Dongen HPA, Maislin G, Mullington JM, Dinges DF. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioural functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep. 2003;26(2):117126. PubMed ID: 12683469 doi:10.1093/sleep/26.2.117

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999;354(9188):14351439. PubMed ID: 10543671 doi:10.1016/S0140-6736(99)01376-8

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Vgontzas AN, Zoumakis E, Bixler EO, et al. Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines. J Clin Endocrinol Metab. 2004;89(5):21192126. PubMed ID: 15126529 doi:10.1210/jc.2003-031562

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hirshwkowitz M, Whiton K, Albert SM, et al. National Sleep Foundation’s updated sleep duration recommendations: final report. Sleep Health. 2015;1:233243.

    • Search Google Scholar
    • Export Citation
  • 9.

    Sargent C, Roach GD. Sleep duration is reduced in elite athletes following night-time competition. Chronobiol Int. 2016;33(6):667670. PubMed ID: 27097227 doi:10.3109/07420528.2016.1167715

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Fullagar HHK, Skorski S, Duffield R, Julian R, Bartlett J, Meyer T. Impaired sleep and recovery after night matches in elite football players. J Sports Sci. 2016;34(14):13331339. PubMed ID: 26750446 doi:10.1080/02640414.2015.1135249

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Sargent C, Halson S, Roach GD. Sleep or swim? Early-morning training severely restricts the amount of sleep obtained by elite swimmers. Eur J Sport Sci. 2014;14(suppl 1):S310S315. PubMed ID: 24444223 doi:10.1080/17461391.2012.696711

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Mah CD, Mah KE, Kezirian EJ, Dement WC. The effects of sleep extension on the athletic performance of collegiate basketball players. Sleep. 2011;34(7):943950. PubMed ID: 21731144 doi:10.5665/SLEEP.1132

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    O’Donnell S, Beaven CM, Driller M. The influence of match-day napping in elite female athletes. Int J Sports Physiol Perf. 2018;13(9):11431148. doi:10.1123/ijspp.2017-0793

    • Search Google Scholar
    • Export Citation
  • 14.

    Lastella M, Halson SL, Vitale JA, Memon AR, Vincent GE. To nap or not to nap? A systematic review evaluating napping behaviour in athletes and the impact on various measures of athletic performance. Nat Sci Sleep. 2021;13:841862. PubMed ID: 34194254 doi:10.2147/NSS.S315556

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Gupta L, Moran K, North C, et al. Napping in high-performance athletes: sleepiness or sleepability? Eur J Sport Sci. 2021;21(3):321330. PubMed ID: 32174283 doi:10.1080/17461391.2020.1743765

    • Search Google Scholar
    • Export Citation
  • 16.

    Achermann P, Werth E, Dijk DJ, Borbely AA. Time course of sleep inertia after nighttime and daytime sleep episodes. Arch Ital Biol. 1995;134:109119. PubMed ID: 8919196 doi:10.4449/aib.v134i1.650

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Ferrara M, De Gennaro L. The sleep inertia phenomenon during the sleep-wake transition: theoretical and operational issues. Aviat Space Environ Med. 2000;71:843848. PubMed ID: 10954363

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Botanis PG, Koutouvakis N, Toubekis AG. The impact of daytime napping on athletic performance—a narrative review. Scand J Med Sci Sports. 2021;31:21642177. doi:10.1111/sms.14060

    • Search Google Scholar
    • Export Citation
  • 19.

    Tietzel AJ, Lack LC. The short-term benefits of brief and long naps following nocturnal sleep restriction. Sleep. 2001;24(3):293300. PubMed ID: 11322712 doi:10.1093/sleep/24.3.293

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Abdessalem R, Boukhris O, Hsouna H, et al. Effect of napping opportunity at different times of day on vigilance and shuttle run performance. Chronobiol Int. 2019;36(10):13341342. PubMed ID: 31368367 doi:10.1080/07420528.2019.1642908

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Daaloul H, Souissi N, Da Venne D. Effects of napping on alertness, cognitive and physical outcomes of karate athletes. Med Sci Sports Exerc. 2018;51(2):338345. doi:10.1249/MSS.0000000000001786

    • Search Google Scholar
    • Export Citation
  • 22.

    Petit E, Mougin F, Bourdin H, Gregory T, Haffen EA. 20-min nap in athletes changes subsequent sleep architecture but does not alter physical performances after normal sleep or 5-h phase-advance conditions. Eur J Appl Physiol. 2014;114(2):305315. PubMed ID: 24276580 doi:10.1007/s00421-013-2776-7

    • Search Google Scholar
    • Export Citation
  • 23.

    Suppiah HT, Chee Yong L, Choong G, Chia M. The effects of a short daytime nap on shooting and sprint performance in high-level adolescent athletes. Int J Sports Physiol Perf. 2018;14:125. doi:10.1123/ijspp.2018-0107

    • Search Google Scholar
    • Export Citation
  • 24.

    Waterhouse J, Atkinson G, Edwards B, Reilly T. The role of a short post-lunch nap in improving cognitive, motor and sprint performance in participants with partial sleep deprivation. J Sport Sci. 2007;25(14):15571566. doi:10.1080/02640410701244983

    • Search Google Scholar
    • Export Citation
  • 25.

    Jewett JE, Wyatt JK, Ritz-De Cecco A, Khalsa SB, Dijk DJ, Czeisler CA. Time course of sleep inertia dissipation in human performance and alertness. J Sleep Res. 1999;8(1):18. PubMed ID: 10188130 doi:10.1111/j.1365-2869.1999.00128.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Iber C, Ancoli-Israel S, Chesson A, Quan SF. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical SpecificationsAmerican Academy of Sleep Medicine; 2007.

    • Search Google Scholar
    • Export Citation
  • 27.

    Dijk D, Duffy JF, Czeisler CA. Circadian and sleep/wake dependent aspects of subjective alertness and cognitive performance. J Sleep Res. 1992;1(2):112117. PubMed ID: 10607036 doi:10.1111/j.1365-2869.1992.tb00021.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Akerstedt T, Gillberg M. Subjective and objective sleepiness in the active individual. Int J Neurosci. 1990;52:2937. PubMed ID: 2265922 doi:10.3109/00207459008994241

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Borg G. Borg’s Perceived Exertion and Pain ScalesHuman Kinetics; 1998.

  • 30.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377381. PubMed ID: 7154893 doi:10.1249/00005768-198205000-00012

  • 31.

    Duthie GM, Pyne DB, Ross AA, Livingstone SG, Hooper SL. The reliability of ten-meter sprint time using different starting techniques. J Strength Cond Res. 2006;20(2):246251. PubMed ID: 16686548 doi:10.1519/R-17084.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Stewart AF, Turner AN, Miller SC. Reliability, factorial validity, and interrelationships of five commonly used change of direction speed tests. Scand J Sci Med Sports. 2014;24(3):500506. doi:10.1111/sms.12019

    • Search Google Scholar
    • Export Citation
  • 33.

    Sawczuk T, Jones B, Scantlebury S, et al. Between-day reliability and usefulness of a fitness testing battery in youth sport athletes: reference data for practitioners. Meas Phys Educ Exerc Sci. 2018;22(1):1118. doi:10.1080/1091367X.2017.1360304

    • Search Google Scholar
    • Export Citation
  • 34.

    Roach GD, Dawson D, Lamond N. Can a shorter psychomotor vigilance task be used as a reasonable substitute for the ten‐minute psychomotor vigilance task? Chronobiol Int. 2006;23(6):13791387. PubMed ID: 17190720 doi:10.1080/07420520601067931

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15:109115. PubMed ID: 11708692

  • 36.

    Wobbrock JO, Findlater L, Gergle D, Higgins JJ. The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures. Paper presented at: Proceedings of the ACM Conference on Human Factors in Computing Systems; Vancouver, BC, Canada; May 7–12, 2011.

    • Search Google Scholar
    • Export Citation
  • 37.

    Elkin LA, Kay M, Higgin, J, Wobbrock JO. An aligned rank transform procedure for multifactor contrast tests. Paper presented at: Proceedings of the ACM Virtual Symposium on User Interface Software and Technology; October 10–14, 2021.

    • Search Google Scholar
    • Export Citation
  • 38.

    Hilditch CJ, Dorrian J, Banks S. A review of short naps and sleep inertia: do naps of 30 min or less really avoid sleep inertia and slow-wave sleep? Sleep Med. 2017;32:176190. PubMed ID: 28366332 doi:10.1016/j.sleep.2016.12.016

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Kovac K, Vincent GE, Paterson JL, et al. The impact of a short burst of exercise on sleep inertia. Physiol Behav. 2021;242:113617. PubMed ID: 34606883 doi:10.1016/j.physbeh.2021.113617

    • Search Google Scholar
    • Export Citation
  • 40.

    Roepke SE, Duffy JF. Differential impact of chronotype on weekday and weekend sleep timing and duration. Nat Sci Sleep. 2010;2:213220. doi:10.2147/NSS.S12572

    • Search Google Scholar
    • Export Citation
  • 41.

    Ding L, Chen B, Dai Y, Li Y. A meta-analysis of the first night effect in healthy individuals for the full age spectrum. Sleep Med. 2022;89:159165. PubMed ID: 34998093 doi:10.1016/j.sleep.2021.12.007

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Arora T, Broglia E, Thomas GN, Taheri S. Associations between specific technologies and adolescent sleep quantity, sleep quality, and parasomnias. Sleep Med. 2014;15(2):240247. PubMed ID: 24394730 doi:10.1016/j.sleep.2013.08.799

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3028 837 50
Full Text Views 167 113 0
PDF Downloads 136 52 0