Muscle Fatigue Is Attenuated When Applying Intermittent Compared With Continuous Blood Flow Restriction During Endurance Cycling

Click name to view affiliation

Rogério Bulhões Corvino Human Performance Research Group, Center for Health and Exercise Science, Santa Catarina State University, Florianopolis, Brazil

Search for other papers by Rogério Bulhões Corvino in
Current site
Google Scholar
PubMed
Close
,
Débora da Luz Scheffer LABOX, Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, Brazil

Search for other papers by Débora da Luz Scheffer in
Current site
Google Scholar
PubMed
Close
,
Rafael Penteado dos Santos Human Performance Research Group, Center for Health and Exercise Science, Santa Catarina State University, Florianopolis, Brazil

Search for other papers by Rafael Penteado dos Santos in
Current site
Google Scholar
PubMed
Close
,
Alexandra Latini LABOX, Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, Brazil

Search for other papers by Alexandra Latini in
Current site
Google Scholar
PubMed
Close
,
Anderson Souza Oliveira Department of Materials and Production, Aalborg University, Aalborg, Denmark

Search for other papers by Anderson Souza Oliveira in
Current site
Google Scholar
PubMed
Close
, and
Fabrizio Caputo Human Performance Research Group, Center for Health and Exercise Science, Santa Catarina State University, Florianopolis, Brazil

Search for other papers by Fabrizio Caputo in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Purpose: The aim of this study was to identify a blood-flow-restriction (BFR) endurance exercise protocol that maximizes metabolic strain and minimizes muscle fatigue. Methods: Twelve healthy participants accomplished 5 different interval cycling endurance exercises (2-min work, 1-min rest) in a randomized order: (1) control, low intensity with unrestricted blood flow (CON30); (2) low intensity with intermittent BFR (i-BFR30, ∼150 mm Hg); (3) low intensity with continuous BFR (c-BFR, ∼100 mm Hg); (4) unloaded cycling with i-BFR0 (∼150 mm Hg); and (5) high intensity (HI) with unrestricted blood flow. Force production, creatine kinase activity, antioxidant markers, blood pH, and potassium (K+) were measured in a range of 5 minutes before and after each cycling exercise protocol. Results: HI showed the highest reduction (Δ = −0.26 [0.05], d = 5.6) on blood pH. Delta pH for c-BRF30 (Δ = −0.02 [0.03], d = 0.8) and Δ pH for i-BRF30 (Δ = −0.04 [0.03], d = 1.6) were different from each other, and both were higher compared with CON30 (Δ = 0.03 [0.03]). There was significant before-to-after force loss following HI (Δ = 55 [40] N·m−1, d = 1.5) and c-BFR30 (Δ = 27 [21] N·m−1, d = 0.7) protocols only, which were accompanied by significant increases in K+ (HI: Δ = 0.94 [0.65] mmol·L−1, d = 1.8; c-BFR30: Δ = 0.72 [0.85] mmol·L−1, d = 1.2). Moreover, all BFR conditions elicited slight increases in plasma creatine kinase, but not for HI and CON30. Glutathione changes from before to after were significant for all BFR conditions and HI, but not for CON30. Conclusions: The attenuation in fatigue-induced reductions in maximal force suggests that i-BFR exercise could be preferable to c-BFR in improving exercise capacity, with considerably less biologic stress elicited from HI exercises.

Caputo (fabrizio.caputo@udesc.br) is corresponding author.

  • Collapse
  • Expand
  • 1.

    Ferguson RA, Mitchell EA, Taylor CW, Bishop DJ, Christiansen D. Blood-flow-restricted exercise: strategies for enhancing muscle adaptation and performance in the endurance-trained athlete. Exp Physiol. 2021;106(4):837860. PubMed ID: 33486814 doi:10.1113/EP089280

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Moritani T, Sherman WM, Shibata M, Matsumoto T, Shinohara M. Oxygen availability and motor unit activity in humans. Eur J Appl Physiol Occup Physiol. 1992;64(6):552556. PubMed ID: 1618195 doi:10.1007/BF00843767

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Corvino RB, Rossiter HB, Loch T, Martins JC, Caputo F. Physiological responses to interval endurance exercise at different levels of blood flow restriction. Eur J Appl Physiol. 2017;117(1):3952. PubMed ID: 27826654 doi:10.1007/s00421-016-3497-5

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    de Oliveira MFM, Caputo F, Corvino RB, Denadai BS. Short-term low-intensity blood flow restricted interval training improves both aerobic fitness and muscle strength. Scand J Med Sci Sports. 2016;26(9):10171025. PubMed ID: 26369387 doi:10.1111/sms.12540

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Christiansen D, Murphy RM, Bangsbo J, Stathis CG, Bishop DJ. Increased FXYD1 and PGC-1α mRNA after blood flow-restricted running is related to fibre type-specific AMPK signalling and oxidative stress in human muscle. Acta Physiol. 2018;223(2):e13045. doi:10.1111/apha.13045

    • Search Google Scholar
    • Export Citation
  • 6.

    Christiansen D, Eibye KH, Rasmussen V, et al. Cycling with blood flow restriction improves performance and muscle K+ regulation and alters the effect of anti-oxidant infusion in humans. J Physiol. 2019;597(9):24212444. PubMed ID: 30843602 doi:10.1113/JP277657

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Christiansen D, Eibye K, Hostrup M, Bangsbo J. Training with blood flow restriction increases femoral artery diameter and thigh oxygen delivery during knee-extensor exercise in recreationally trained men. J Physiol. 2020;598(12):23372353. PubMed ID: 32246768 doi:10.1113/JP279554

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Corvino RB, Oliveira MFM, Denadai BS, Rossiter HB, Caputo F. Speeding of oxygen uptake kinetics is not different following low-intensity blood-flow-restricted and high-intensity interval training. Exp Physiol. 2019;104(12):18581867. PubMed ID: 31613029 doi:10.1113/EP087727

    • Search Google Scholar
    • Export Citation
  • 9.

    Wernbom M, Schoenfeld BJ, Paulsen G, et al. Commentary: can blood flow restricted exercise cause muscle damage? Commentary on blood flow restriction exercise: considerations of methodology, application, and safety. Front Physiol. 2020;10:1332. doi:10.3389/fphys.2020.00243

    • Search Google Scholar
    • Export Citation
  • 10.

    Patterson SD, Hughes L, Warmington S, et al. Blood flow restriction exercise: considerations of methodology, application, and safety. Front Physiol. 2019;10(MAY):115.

    • Search Google Scholar
    • Export Citation
  • 11.

    Lisbôa FD, Salvador AF, Raimundo JAG, Pereira KL, de Aguiar RA, Caputo F. Decreasing power output increases aerobic contribution during low-volume severe-intensity intermittent exercise. J Strength Cond Res. 2015;29(9):24342440. PubMed ID: 26308828 doi:10.1519/JSC.0000000000000914

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Hissin PJ, Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem. 1976;74(1):214226. PubMed ID: 962076 doi:10.1016/0003-2697(76)90326-2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Aksenov MY, Markesbery WR. Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett. 2001;302(2–3):141145. PubMed ID: 11290407 doi:10.1016/S0304-3940(01)01636-6

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hillside NJ. Statistical Power Analysis for the Behavioural Sciences. 1988.

  • 15.

    Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1(1):5057. PubMed ID: 19114737 doi:10.1123/ijspp.1.1.50

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Wernbom M, Aagaard P. Muscle fibre activation and fatigue with low-load blood flow restricted resistance exercise—An integrative physiology review. Acta Physiol. 2020;228(1):e13302. doi:10.1111/apha.13302

    • Search Google Scholar
    • Export Citation
  • 17.

    Wernbom M, Paulsen G, Nilsen TS, Hisdal J, Raastad T. Contractile function and sarcolemmal permeability after acute low-load resistance exercise with blood flow restriction. Eur J Appl Physiol. 2012;112(6):20512063. PubMed ID: 21947453 doi:10.1007/s00421-011-2172-0

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Copithorne DB, Rice CL. Neuromuscular function and blood flow occlusion with dynamic arm flexor contractions. Med Sci Sports Exerc. 2020;52(1):205213. PubMed ID: 31318712 doi:10.1249/MSS.0000000000002091

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Oliveira AS, Caputo F, Aagaard P, Corvino RB, Gonçalves M, Denadai BS. Isokinetic eccentric resistance training prevents loss in mechanical muscle function after running. Eur J Appl Physiol. 2013;113(9):23012311. PubMed ID: 23680937 doi:10.1007/s00421-013-2660-5

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Loenneke JP, Thiebaud RS, Abe T. Does blood flow restriction result in skeletal muscle damage? A critical review of available evidence. Scand J Med Sci Sports. 2014;24(6):e415422. PubMed ID: 24650102 doi:10.1111/sms.12210

    • Search Google Scholar
    • Export Citation
  • 21.

    Clanton TL. Hypoxia-induced reactive oxygen species formation in skeletal muscle. J Appl Physiol. 2007;102(6):23792388. PubMed ID: 17289907 doi:10.1152/japplphysiol.01298.2006

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Garten RS, Goldfarb A, Crabb B, Waller J. The impact of partial vascular occlusion on oxidative stress markers during resistance exercise. Int J Sports Med. 2015;36(7):542549. PubMed ID: 25806587 doi:10.1055/s-0034-1396827

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Yucel D, Dalva K. Effect of in vitro hemolysis on 25 common biochemical tests. Clin Chem. 1992;38(4):575577. PubMed ID: 1568325

  • 24.

    Lew H, Pyke S, Quintanilha A. Changes in the glutathione status of plasma, liver and muscle following exhaustive exercise in rats. FEBS Lett. 1985;185(2):262266. PubMed ID: 3996604 doi:10.1016/0014-5793(85)80919-4

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Pyke S, Lew H, Quintanilha A. Severe depletion in liver glutathione during physical exercise. Biochem Biophys Res Commun. 1986;139(3):926931. PubMed ID: 3768007 doi:10.1016/S0006-291X(86)80266-2.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Rahnama N, Lees A, Reilly T. Electromyography of selected lower-limb muscles fatigued by exercise at the intensity of soccer match-play. J Electromyogr Kinesiol. 2006;16(3):257263. PubMed ID: 16146698 doi:10.1016/j.jelekin.2005.07.011

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2842 759 70
Full Text Views 166 107 0
PDF Downloads 128 24 0