Global Positioning System Watches and Electronic Journals: Are Training-Load Measures Similar in High School Cross-Country Runners?

Click name to view affiliation

Micah C. Garcia College of Health and Human Services, University of Toledo, Toledo, OH, USA

Search for other papers by Micah C. Garcia in
Current site
Google Scholar
PubMed
Close
*
and
David M. Bazett-Jones College of Health and Human Services, University of Toledo, Toledo, OH, USA

Search for other papers by David M. Bazett-Jones in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: Running programs are designed to progress training loads by manipulating the duration, frequency, and/or intensity of running sessions. While some studies use journals to monitor training load, others have used wearable technology. The purpose of this study was to compare the validity of self-reported and global positioning system (GPS)–watch-derived measures of external and internal loads in high school cross-country runners. Methods: Twenty-two high school cross-country runners participated in the study during fall 2020. Participants recorded running sessions using a GPS watch and self-reported the running session using an electronic journal. External (distance and duration) and internal loads (session rating of perceived exertion [sRPE], average, and maximum heart rate) were retrieved from the GPS watch and electronic journal. Correlations compared relationships, and Bland–Altman plots compared agreements between GPS-watch-derived and self-reported measures of training loads. Results: We found moderate relationships between self-reported and GPS-watch-derived measures of external loads (distance: r = .76, moving duration: r = .74, and elapsed duration: r = .70) and poor relationships between internal loads (sRPE vs average heart rate: ρ = .11, sRPE vs maximal heart rate: ρ = .13). We found mean differences of −0.8 km (95% = –6.3 to +4.8 km) for distance, −4.5 minutes (95% = −27.8 to +33.2 min) for moving duration, and 2.7 minutes (95% = –27.8 min to +33.2 min) for elapsed duration. Conclusions: High school runners overreported running distance and duration using self-reports, and self-reported and GPS-watch-derived measures of internal loads demonstrated poor agreement. Coaches and clinicians should use caution when comparing results from studies using different methods of monitoring training loads.

Bazett-Jones (David.BazettJones@utoledo.edu) is corresponding author.

Supplementary Materials

    • Supplementary Figure S1 (PDF 220 KB)
  • Collapse
  • Expand
  • 1.

    Krabak BJ, Roberts WO, Tenforde AS, et al. Youth running consensus statement: minimising risk of injury and illness in youth runners. Br J Sports Med. 2021;55(6):305318. PubMed ID: 33122252 doi:10.1136/bjsports-2020-102518

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Seiler S, Tonnessen E. Intervals, threshold and long slow distance: the role of intensity and duration in endurance training. Sports Sci. 2009;13:3253.

    • Search Google Scholar
    • Export Citation
  • 3.

    Running: how to safely increase your mileage. J Orthop Sports Phys Ther. 2014;44(10):748. doi:10.2519/jospt.2014.0506

  • 4.

    Bertelsen ML, Hulme A, Petersen J, et al. A framework for the etiology of running-related injuries. Scand J Med Sci Sports. 2017;27(11):11701180. PubMed ID: 28329441 doi:10.1111/sms.12883

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Soligard T, Schwellnus M, Alonso JM, et al. How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. Br J Sports Med. 2016;50(17):10301041. PubMed ID: 27535989 doi:10.1136/bjsports-2016-096581

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Impellizzeri FM, Marcora SM, Coutts AJ. Internal and external training load: 15 years on. Int J Sports Physiol Perform. 2019;14(2):270273. PubMed ID: 30614348 doi:10.1123/ijspp.2018-0935

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Napier C, Ryan M, Menon C, Paquette MR. Session rating of perceived exertion combined with training volume for estimating training responses in runners. J Athl Train. 2020;55(12):12851291. doi:10.4085/1062-6050-573-19

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Ryan MR, Napier C, Greenwood D, Paquette MR. Comparison of different measures to monitor week-to-week changes in training load in high school runners. Int J Sports Sci Coach. 2020;16(2):370379. doi:10.1177/1747954120970305

    • Search Google Scholar
    • Export Citation
  • 9.

    Garcia MC, Pexa BS, Ford KR, Rauh MJ, Bazett-Jones DM. Quantification method influences training load change in high school cross-country runners across a competitive season. J Athl Train. Published online December 13, 2021. PubMed ID: 34902855 doi:10.4085/1062-6050-523-21

    • Search Google Scholar
    • Export Citation
  • 10.

    Winter SC, Gordon S, Brice SM, Lindsay D, Barrs S. A multifactorial approach to overuse running injuries: a 1-year prospective study. Sports Health. 2020;12(3):296303. PubMed ID: 31994970 doi:10.1177/1941738119888504

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Nakaoka G, Barboza SD, Verhagen E, van Mechelen W, Hespanhol L. The association between the acute:chronic workload ratio and running-related injuries in Dutch runners: a prospective cohort study. Sports Med. 2021;51(11):24372447. PubMed ID: 34052983 doi:10.1007/s40279-021-01483-0

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Mann RH, Clarsen BM, McKay CD, Clift BC, Williams CA, Barker AR. Prevalence and burden of health problems in competitive adolescent distance runners: a 6-month prospective cohort study. J Sports Sci. 2021;39(12):13661375. PubMed ID: 33504281 doi:10.1080/02640414.2021.1874160

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Buist I, Bredeweg SW, Lemmink KA, van Mechelen W, Diercks RL. Predictors of running-related injuries in novice runners enrolled in a systematic training program: a prospective cohort study. Am J Sports Med. 2010;38(2):273280. PubMed ID: 19966104 doi:10.1177/0363546509347985

    • Search Google Scholar
    • Export Citation
  • 14.

    Desai P, Jungmalm J, Borjesson M, Karlsson J, Grau S. Recreational runners with a history of injury are twice as likely to sustain a running-related injury as runners with no history of injury: a 1-year prospective cohort study. J Orthop Sports Phys Ther. 2021;51(3):144150. PubMed ID: 33356768 doi:10.2519/jospt.2021.9673

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Dideriksen M, Soegaard C, Nielsen RO. Validity of self-reported running distance. J Strength Cond Res. 2016;30(6):15921596. PubMed ID: 26479023 doi:10.1519/JSC.0000000000001244

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Nielsen RO, Cederholm P, Buist I, Sorensen H, Lind M, Rasmussen S. Can GPS be used to detect deleterious progression in training volume among runners? J Strength Cond Res. 2013;27(6):14711478. PubMed ID: 22990565 doi:10.1519/JSC.0b013e3182711e3c

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Paquette MR, Napier C, Willy RW, Stellingwerff T. Moving beyond weekly ‘distance’: optimizing quantification of training load in runners. J Orthop Sports Phys Ther. 2020;50(10):564569. doi:10.2519/jospt.2020.9533

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Saw AE, Main LC, Gastin PB. Monitoring the athlete training response: subjective self-reported measures trump commonly used objective measures: a systematic review. Br J Sports Med. 2016;50(5):281291. PubMed ID: 26423706 doi:10.1136/bjsports-2015-094758

    • Search Google Scholar
    • Export Citation
  • 19.

    Matos S, Clemente FM, Brandao A, et al. Training load, aerobic capacity and their relationship with wellness status in recreational trail runners. Front Physiol. 2019;10:1189. PubMed ID: 31607945 doi:10.3389/fphys.2019.01189

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Buchheit M. Monitoring training status with HR measures: do all roads lead to Rome? Front Physiol. 2014;5:73. PubMed ID: 24578692 doi:10.3389/fphys.2014.00073

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Stahl SE, An HS, Dinkel DM, Noble JM, Lee JM. How accurate are the wrist-based heart rate monitors during walking and running activities? Are they accurate enough? BMJ Open Sport Exerc Med. 2016;2(1):e000106. PubMed ID: 27900173 doi:10.1136/bmjsem-2015-000106

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Mann RH, Williams CA, Clift BC, Barker AR. The validation of session rating of perceived exertion for quantifying internal training load in adolescent distance runners. Int J Sports Physiol Perform. 2019;14(3):354359. PubMed ID: 30160557 doi:10.1123/ijspp.2018-0120

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Scantlebury S, Till K, Atkinson G, Sawczuk T, Jones B. The within-participant correlation between s-RPE and heart rate in youth sport. Sports Med Int Open. 2017;1(6):E195E199. PubMed ID: 30539107 doi:10.1055/s-0043-118650

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Yamato TP, Saragiotto BT, Lopes AD. A consensus definition of running-related injury in recreational runners: a modified Delphi approach. J Orthop Sports Phys Ther. 2015;45(5):375380. PubMed ID: 25808527 doi:10.2519/jospt.2015.5741

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Borg G. Borg’s Perceived Exertion and Pain Scales. 1998. Human Kinetics.

  • 26.

    garminexport [Computer program]. Version 0.2.0. https://github.com/petergardfjall/garminexport.git2020

  • 27.

    Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37(1):153156. PubMed ID: 11153730 doi:10.1016/S0735-1097(00)01054-8

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Chan YH. Biostatistics 104: correlational analysis. Singapore Med J. 2003;44(12):614619. PubMed ID: 14770254

  • 29.

    McHugh ML. Interrater reliability: the kappa statistic. Biochem Med. 2012;22(3):276282. doi:10.11613/BM.2012.031

  • 30.

    Karahanoglu A, Gouveia R, Reenalda J, Ludden G. How are sports-trackers used by runners? Running-related data, personal goals, and self-tracking in running. Sensors. 2021;21(11):3687. doi:10.3390/s21113687

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Pasadyn SR, Soudan M, Gillinov M, et al. Accuracy of commercially available heart rate monitors in athletes: a prospective study. Cardiovasc Diagn Ther. 2019;9(4):379385. PubMed ID: 31555543 doi:10.21037/cdt.2019.06.05

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Gillinov S, Etiwy M, Wang R, et al. Variable accuracy of wearable heart rate monitors during aerobic exercise. Med Sci Sports Exerc. 2017;49(8):16971703. PubMed ID: 28709155 doi:10.1249/MSS.0000000000001284.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Shcherbina A, Mattsson CM, Waggott D, et al. Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. J Pers Med. 2017;7(2):3. doi:10.3390/jpm7020003

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1785 431 65
Full Text Views 113 82 0
PDF Downloads 64 20 0