Effects of Bilateral Dorsolateral Prefrontal Cortex High-Definition Transcranial Direct-Current Stimulation on Physiological and Performance Responses at Severe-Intensity Exercise Domain in Elite Road Cyclists

Click name to view affiliation

Gabriele Gallo Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy

Search for other papers by Gabriele Gallo in
Current site
Google Scholar
PubMed
Close
,
Elisabetta Geda IRR Istituto delle Riabilitazioni Riba, Turin, Italy

Search for other papers by Elisabetta Geda in
Current site
Google Scholar
PubMed
Close
,
Roberto Codella Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy

Search for other papers by Roberto Codella in
Current site
Google Scholar
PubMed
Close
,
Emanuela Faelli Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy

Search for other papers by Emanuela Faelli in
Current site
Google Scholar
PubMed
Close
,
Marco Panascì Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy

Search for other papers by Marco Panascì in
Current site
Google Scholar
PubMed
Close
,
Luis Eduardo Ranieri Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy

Search for other papers by Luis Eduardo Ranieri in
Current site
Google Scholar
PubMed
Close
,
Luca Pollastri Laboratory of Sport Sciences, PENTAVIS, Lecco, Italy

Search for other papers by Luca Pollastri in
Current site
Google Scholar
PubMed
Close
,
Stefania Brighenti IRR Istituto delle Riabilitazioni Riba, Turin, Italy

Search for other papers by Stefania Brighenti in
Current site
Google Scholar
PubMed
Close
,
Luigi Molino IRR Istituto delle Riabilitazioni Riba, Turin, Italy

Search for other papers by Luigi Molino in
Current site
Google Scholar
PubMed
Close
,
Ugo Riba IRR Istituto delle Riabilitazioni Riba, Turin, Italy

Search for other papers by Ugo Riba in
Current site
Google Scholar
PubMed
Close
,
Livio Luzi Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy

Search for other papers by Livio Luzi in
Current site
Google Scholar
PubMed
Close
,
Piero Ruggeri Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy

Search for other papers by Piero Ruggeri in
Current site
Google Scholar
PubMed
Close
, and
Luca Filipas Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy

Search for other papers by Luca Filipas in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Purpose: To investigate the effects of bilateral dorsolateral prefrontal cortex high-definition transcranial direct-current stimulation (HD-tDCS) on physiological and performance responses during exercise at the upper limit of the severe-intensity exercise domain in elite-level road cyclists. Methods: Eleven elite-level road cyclists (VO2peak: 71.8 [3.1] mL·kg−1·min−1) underwent the HD-tDCS or SHAM condition in a double-blind, counterbalanced, and randomized order. After 20 minutes of receiving either HD-tDCS on dorsolateral prefrontal cortex (F3 and F4) or SHAM stimulation, participants completed a 10-minute constant-load trial (CLT1) at 90% of the first ventilatory threshold and a 2-minute CLT (CLT2) at peak power output. Thereafter, they performed a simulated 2-km time trial (TT). Maximal oxygen uptake, respiratory exchange ratio, heart rate, and rating of perceived exertion were recorded during CLT1 and CLT2, whereas performance parameters were recorded during the TT. Results: In 6 out of 11 cyclists, the total time to complete the TT was 3.0% faster in HD-tDCS compared to SHAM. Physiological and perceptual variables measured during CLT1 and CLT2 did not change between HD‐tDCS and SHAM. Conclusions: HD-tDCS over the dorsolateral prefrontal cortex seemed to improve cycling TT performance within the upper limit of the severe-intensity exercise domain, suggesting that an upregulation of the prefrontal cortex could be critical even in this exercise intensity domain. However, the limited dimension and the high interindividual variability require further studies to test these putative ergogenic effects.

Filipas (luca.filipas@unimi.it) is corresponding author.

Supplementary Materials

    • Supplementary Table S1 (PDF 180 KB)
  • Collapse
  • Expand
  • 1.

    Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2011;17(1):3753. doi:10.1177/1073858410386614

  • 2.

    Okano AH, Fontes EB, Montenegro RA, et al. Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise. Br J Sports Med. 2015;49(18):12131218. doi:10.1136/bjsports-2012-091658

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Vitor-Costa M, Okuno NM, Bortolotti H, et al. Improving cycling performance: transcranial direct current stimulation increases time to exhaustion in cycling. PLoS One. 2015;10(12):e0144916. PubMed ID: 26674200 doi:10.1371/journal.pone.0144916

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Angius L, Mauger AR, Hopker J, Pascual-Leone A, Santarnecchi E, Marcora SM. Bilateral extracephalic transcranial direct current stimulation improves endurance performance in healthy individuals. Brain Stimul. 2018;11(1):108117. PubMed ID: 29079458 doi:10.1016/j.brs.2017.09.017

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Angius L, Pageaux B, Hopker J, Marcora SM, Mauger AR. Transcranial direct current stimulation improves isometric time to exhaustion of the knee extensors. Neuroscience. 2016;339:363375. PubMed ID: 27751960 doi:10.1016/j.neuroscience.2016.10.028

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Holgado D, Zandonai T, Ciria LF, Zabala M, Hopker J, Sanabria D. Transcranial direct current stimulation (tDCS) over the left prefrontal cortex does not affect time-trial self-paced cycling performance: evidence from oscillatory brain activity and power output. PLoS One. 2019;14(2):e0210873. PubMed ID: 30726234 doi:10.1371/journal.pone.0210873

    • Search Google Scholar
    • Export Citation
  • 7.

    Valenzuela PL, Amo C, Sánchez-Martínez G, et al. Enhancement of mood but not performance in elite athletes with transcranial direct-current stimulation. Int J Sports Physiol Perform. 2019;14(3):310316. PubMed ID: 30080428 doi:10.1123/ijspp.2018-0473

    • Search Google Scholar
    • Export Citation
  • 8.

    Alam M, Truong DQ, Khadka N, Bikson M. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS). Phys Med Biol. 2016;61(12):4506. PubMed ID: 27223853 doi:10.1088/0031-9155/61/12/4506

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    da Silva Machado DG, Bikson M, Datta A, et al. Acute effect of high-definition and conventional tDCS on exercise performance and psychophysiological responses in endurance athletes: a randomized controlled trial. Sci Rep. 2021;11(1):13911. PubMed ID: 34230503 doi:10.1038/s41598-021-92670-6

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Pollastri L, Gallo G, Zucca M, et al. Bilateral dorsolateral prefrontal cortex high-definition transcranial direct-current stimulation improves time-trial performance in elite cyclists. Int J Sports Physiol Perform. 2020;16(3):224231. doi:10.1123/ijspp.2019-0910

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Filipas L, Martin K, Northey JM, La Torre A, Keegan R, Rattray B. Response to the letter to the editor regarding the article “A 4-week endurance training program improves tolerance to mental exertion in untrained individuals.” J Sci Med Sport. 2021;24(12):12021203. PubMed ID: 34119397 doi:10.1016/j.jsams.2021.05.012

    • Search Google Scholar
    • Export Citation
  • 12.

    Angius L, Santarnecchi E, Pascual-Leone A, Marcora SM. Transcranial direct current stimulation over the left dorsolateral prefrontal cortex improves inhibitory control and endurance performance in healthy individuals. Neuroscience. 2019;419:3445. PubMed ID: 31493549 doi:10.1016/j.neuroscience.2019.08.052

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Burnley M, Jones AM. Power–duration relationship: physiology, fatigue, and the limits of human performance. Eur J Sport Sci. 2018;18(1):112. PubMed ID: 27806677 doi:10.1080/17461391.2016.1249524

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Thomas K, Goodall S, Stone M, Howatson G, Gibson ASC, Ansley L. Central and peripheral fatigue in male cyclists after 4-, 20-, and 40-km time trials. Med Sci Sports Exerc. 2015;47(3):537546. PubMed ID: 25051388 doi:10.1249/MSS.0000000000000448

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Thomas K, Elmeua M, Howatson G, Goodall S. Intensity-dependent contribution of neuromuscular fatigue after constant-load cycling. Med Sci Sports Exerc. 2016;48(9):17511760. PubMed ID: 27187101 doi:10.1249/MSS.0000000000000950

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Lattari E, de Oliveira BS, Oliveira BRR, de Mello Pedreiro RC, Machado S, Neto GAM. Effects of transcranial direct current stimulation on time limit and ratings of perceived exertion in physically active women. Neurosci Lett. 2018;662:1216. PubMed ID: 28993207 doi:10.1016/j.neulet.2017.10.007

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    McKay AKA, Stellingwerff T, Smith ES, et al. Defining training and performance caliber: a participant classification framework. Int J Sports Physiol Perform. 2022;17(2):317331. PubMed ID: 34965513 doi:10.1123/ijspp.2021-0451

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Binder RK, Wonisch M, Corra U, et al. Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. Eur J Prev Cardiol. 2008;15(6):726734. doi:10.1097/HJR.0b013e328304fed4

    • Search Google Scholar
    • Export Citation
  • 19.

    Borg G. Borg’s Rating of Perceived Exertion and Pain Scales. 1998.

  • 20.

    Stoet G. PsyToolkit: a novel web-based method for running online questionnaires and reaction-time experiments. Teach Psychol. 2016;44(1):2431. doi:10.1177/0098628316677643

    • Search Google Scholar
    • Export Citation
  • 21.

    Stoet G. PsyToolkit: a software package for programming psychological experiments using Linux. Behav Res Methods. 2010;42(4):10961104. PubMed ID: 21139177 doi:10.3758/BRM.42.4.1096

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Herwig U, Satrapi P, Schönfeldt-Lecuona C. Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr. 2003;16(2):9599. PubMed ID: 14977202 doi:10.1023/B:BRAT.0000006333.93597.9d

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Angius L, Hopker J, Mauger AR. The ergogenic effects of transcranial direct current stimulation on exercise performance. Front Physiol. 2017;8:90. PubMed ID: 28261112 doi:10.3389/fphys.2017.00090

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Bikson M, Grossman P, Thomas C, et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 2016;9(5):641661. doi:10.1016/j.brs.2016.06.004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Bakeman R. Recommended effect size statistics for repeated measures designs. Behav Res Methods. 2005;37(3):379384. PubMed ID: 16405133 doi:10.3758/BF03192707

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Wassertheil S, Cohen J. Statistical power analysis for the behavioral sciences. Biometrics. 1970;26(3):588. doi:10.2307/2529115

  • 27.

    Carr AJ, Hopkins WG, Gore CJ. Effects of acute alkalosis and acidosis on performance: a meta-analysis. Sports Med. 2011;41(10):801814. PubMed ID: 21923200 doi:10.2165/11591440-000000000-00000

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Marcello Iaia F, Perez-Gomez J, Thomassen M, Nordsborg NB, Hellsten Y, Bangsbo J. Relationship between performance at different exercise intensities and skeletal muscle characteristics. J Appl Physiol. 2011;110(6):15551563. doi:10.1152/japplphysiol.00420.2010

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Saunders B, Elliott-Sale K, Artioli GG, et al. β-Alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis. Br J Sports Med. 2017;51(8):658669. PubMed ID: 27797728 doi:10.1136/bjsports-2016-096396

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Peeling P, Binnie MJ, Goods PSR, Sim M, Burke LM. Evidence-based supplements for the enhancement of athletic performance. Int J Sport Nutr Exerc Metab. 2018;28(2):178187. PubMed ID: 29465269 doi:10.1123/ijsnem.2017-0343

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Davis JK, Green JM. Caffeine and anaerobic performance: ergogenic value and mechanisms of action. Sports Med. 2009;39(10):813832. PubMed ID: 19757860 doi:10.2165/11317770-000000000-00000

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Johnson MA, Sharpe GR, Williams NC, Hannah R. Locomotor muscle fatigue is not critically regulated after prior upper body exercise. J Appl Physiol. 2015;119(7):840850. PubMed ID: 26272315 doi:10.1152/japplphysiol.00072.2015

    • Search Google Scholar
    • Export Citation
  • 33.

    Pageaux B. The psychobiological model of endurance performance: an effort-based decision-making theory to explain self-paced endurance performance. Sports Med. 2014;44(9):13191320. doi:10.1007/s40279-014-0198-2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Filipas L, Martin K, Northey JM, La Torre A, Keegan R, Rattray B. A 4-week endurance training program improves tolerance to mental exertion in untrained individuals. J Sci Med Sport. 2020;23(12):12151219. PubMed ID: 32456979 doi:10.1016/j.jsams.2020.04.020

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Filipas L, Borghi S, La Torre A, Smith MR. Effects of mental fatigue on soccer-specific performance in young players. Sci Med Footb. 2021;5(2):150157. PubMed ID: 35077334 doi:10.1080/24733938.2020.1823012

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Filipas L. The effect of mental fatigue on sport-specific endurance and technical performances (PhD Academy Award). Br J Sports Med. 2021;55(1):6768. doi:10.1136/bjsports-2020-102397

    • Search Google Scholar
    • Export Citation
  • 37.

    Li LM, Uehara K, Hanakawa T. The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front Cell Neurosci. 2015;9:181. PubMed ID: 26029052 doi:10.3389/fncel.2015.00181

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Furuya S, Klaus M, Nitsche MA, Paulus W, Altenmüller E. Ceiling effects prevent further improvement of transcranial stimulation in skilled musicians. J Neurosci. 2014;34(41):1383413839. PubMed ID: 25297109 doi:10.1523/JNEUROSCI.1170-14.2014

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Bhambhani Y, Malik R, Mookerjee S. Cerebral oxygenation declines at exercise intensities above the respiratory compensation threshold. Respir Physiol Neurobiol. 2007;156(2):196202. PubMed ID: 17045853 doi:10.1016/j.resp.2006.08.009

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3302 793 53
Full Text Views 185 118 3
PDF Downloads 114 29 4