9/3-Minute Running Critical Power Test: Mechanical Threshold Location With Respect to Ventilatory Thresholds and Maximum Oxygen Uptake

Click name to view affiliation

Santiago A. Ruiz-Alias Department of Physical Education and Sport, University of Granada, Granada, Spain
Sport and Health University Research Center (iMUDS), Granada, Spain

Search for other papers by Santiago A. Ruiz-Alias in
Current site
Google Scholar
PubMed
Close
*
,
Javier Olaya-Cuartero Faculty of Health Sciences, Isabel I University, Burgos, Spain

Search for other papers by Javier Olaya-Cuartero in
Current site
Google Scholar
PubMed
Close
,
Alberto A. Ñancupil-Andrade Department of Physical Education and Sport, University of Granada, Granada, Spain
Sport and Health University Research Center (iMUDS), Granada, Spain
Department of Health, Los Lagos University, Puerto Montt, Chile

Search for other papers by Alberto A. Ñancupil-Andrade in
Current site
Google Scholar
PubMed
Close
, and
Felipe García-Pinillos Department of Physical Education and Sport, University of Granada, Granada, Spain
Sport and Health University Research Center (iMUDS), Granada, Spain
Department of Physical Education, Sports and Recreation, Universidad de La Frontera, Temuco, Chile

Search for other papers by Felipe García-Pinillos in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: The critical power (CP) concept has been extended from cycling to the running field with the development of wearable monitoring tools. Particularly, the Stryd running power meter and its 9/3-minute CP test is very popular in the running community. Locating this mechanical threshold according to the physiological landmarks would help to define each boundary and intensity domain in the running field. Thus, this study aimed to determine the CP location concerning anaerobic threshold, respiratory compensation point (RCP), and maximum oxygen uptake (VO2max). Method: A group of 15 high-caliber athletes performed the 9/3-minute Stryd CP test and a graded exercise test in 2 different testing sessions. Results: Anaerobic threshold, RCP, and CP were located at 73% (5.41%), 86.82% (3.85%), and 88.71% (5.84%) of VO2max, respectively, with a VO2max of 66.3 (7.20) mL/kg/min. No significant differences were obtained between CP and RCP in any of its units (ie, in watts per kilogram and milliliters per kilogram per minute; P ≥ .184). Conclusions: CP and RCP represent the same boundary in high-caliber athletes. These results suggest that coaches and athletes can determine the metabolic perturbance threshold that CP and RCP represent in an easy and accessible way.

  • Collapse
  • Expand
  • 1.

    Poole DC, Jones AM. Oxygen uptake kinetics. Compr Physiol. 2012;2(2):933996. PubMed ID: 23798293

  • 2.

    Fitts RH. Cellular mechanisms of muscle fatigue. Physiol Rev. 1994;74(1):4994. PubMed ID: 8295935 doi:10.1152/physrev.1994.74.1.49

  • 3.

    Hill AV. The physiological basis of athletic records. Sci Mon. 1925;21(4):409428.

  • 4.

    Hill DW. The critical power concept. Sports Med. 1993;16(4):237254. PubMed ID: 8248682 doi:10.2165/00007256-199316040-00003

  • 5.

    Jones AM, Wilkerson DP, DiMenna F, Fulford J, Poole DC. Muscle metabolic responses to exercise above and below the “critical power” assessed using 31P-MRS. Am J Physiol Regul Integr Comp Physiol. 2008;294(2):R585R593. PubMed ID: 18056980 doi:10.1152/ajpregu.00731.2007

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Gorostiaga EM, Sánchez-Medina L, Garcia-Tabar I. Over 55 years of critical power: fact or artifact? Scand J Med Sci Sports. 2022;32(1):116124. PubMed ID: 34618981 doi:10.1111/sms.14074

    • Search Google Scholar
    • Export Citation
  • 7.

    Cerezuela-Espejo V, Hernández-Belmonte A, Courel-Ibáñez J, Conesa-Ros E, Mora-Rodríguez R, Pallarés JG. Are we ready to measure running power? Repeatability and concurrent validity of five commercial technologies. Eur J Sport Sci. 2021;21(3):341350. PubMed ID: 32212955 doi:10.1080/17461391.2020.1748117

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Stryd. How do I perform a critical power test and get my critical power and power zones? Published 2022. https://support.stryd.com/hc/en-us/articles/115003989074-How-do-I-perform-a-Critical-Power-test-and-get-my-Critical-Power-and-Power-Zones. Accessed January 26, 2022.

    • Search Google Scholar
    • Export Citation
  • 9.

    Imbach F, Candau R, Chailan R, Perrey S. Validity of the Stryd power meter in measuring running parameters at submaximal speeds. Sports. 2020;8(7):103. doi:10.3390/sports8070103

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Taboga P, Giovanelli N, Spinazzè E, et al. Running power: lab based vs. portable devices measurements and its relationship with aerobic power. Eur J Sport Sci. 2021;114 doi:10.1080/17461391.2021.1966104

    • Search Google Scholar
    • Export Citation
  • 11.

    Honert EC, Mohr M, Lam WK, Nigg S. Shoe feature recommendations for different running levels: a Delphi study. PLoS One. 2020;15(7):e0236047. doi:10.1371/journal.pone.0236047

    • Search Google Scholar
    • Export Citation
  • 12.

    Ling CH, de Craen AJ, Slagboom PE, et al. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin Nutr. 2011;30(5):610615. PubMed ID: 21555168 doi:10.1016/j.clnu.2011.04.001

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Tsekouras YE, Tambalis KD, Sarras SE, Antoniou AK, Kokkinos P, Sidossis LS. Validity and reliability of the new portable metabolic analyzer PNOE. Front Sports Act Living, 2019;1:24. PubMed ID: 33344948 doi:10.3389/fspor.2019.00024

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):115. PubMed ID: 10907753 doi:10.2165/00007256-200030010-00001

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Kuipers H, Rietjens GJWM, Verstappen F, Schoenmakers H, Hofman G. Effects of stage duration in incremental running tests on physiological variables. Int J Sports Med. 2003;24(7):486491. doi:10.1055/s-2003-42020

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Leo JA, Sabapathy S, Simmonds MJ, Cross TJ. The respiratory compensation point is not a valid surrogate for critical power. Med Sci Sports Exerc. 2017;49(7):14521460. PubMed ID: 28166117 doi:10.1249/MSS.0000000000001226

    • Search Google Scholar
    • Export Citation
  • 17.

    Wasserman K, Whipp BJ, Koyl SN, Beaver WL. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol. 1973;35(2):236243. PubMed ID: 4723033 doi:10.1152/jappl.1973.35.2.236

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Wasserman K, McIlroy MB. Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. Am J Cardiol. 1964;14(6):844852. doi:10.1016/0002-9149(64)90012-8

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Patoz A, Blokker T, Pedrani N, Spicher R, Borrani F, Malatesta D. Oxygen uptake at critical speed and power in running: perspectives and practical applications. Int J Sports Physiol Perform. 2021;1:17.

    • Search Google Scholar
    • Export Citation
  • 20.

    Nardello F, Ardigò LP, Minetti AE. Measured and predicted mechanical internal work in human locomotion. Hum Mov Sci. 2011;30(1):90104. PubMed ID: 21056491 doi:10.1016/j.humov.2010.05.012

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    García-Pinillos F, Roche-Seruendo LE, Marcén-Cinca N, Marco-Contreras LA, Latorre-Román PA. Absolute reliability and concurrent validity of the Stryd system for the assessment of running stride kinematics at different velocities. J Strength Cond Res. 2021;35(1):7884. PubMed ID: 29781934 doi:10.1519/JSC.0000000000002595

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Cerezuela-Espejo V, Hernández-Belmonte A, Courel-Ibáñez J, Conesa-Ros E, Martínez-Cava A, Pallarés JG. Running power meters and theoretical models based on laws of physics: effects of environments and running conditions. Physiol Behav. 2020;223:112972. PubMed ID: 32470479 doi:10.1016/j.physbeh.2020.112972

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    García-Pinillos F, Latorre-Román , Roche-Seruendo LE, García-Ramos A. Prediction of power output at different running velocities through the two-point method with the Stryd power meter. Gait Posture. 2019;68:238243. PubMed ID: 30528962 doi:10.1016/j.gaitpost.2018.11.037

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Galán-Rioja , González-Mohíno F, Poole DC, González-Ravé JM. Relative proximity of critical power and metabolic/ventilatory thresholds: systematic review and meta-analysis. Sports Med. 2020;50(10):17711783. PubMed ID: 32613479 doi:10.1007/s40279-020-01314-8

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Bishop D, Jenkins DG, Howard A. The critical power function is dependent on the duration of the predictive exercise tests chosen. Int J Sports Med. 1998;19(2):125129. doi:10.1055/s-2007-971894

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC. Critical power: implications for determination of VO2max and exercise tolerance. Med Sci Sports Exerc. 2010;42(10):18761890. PubMed ID: 20195180 doi:10.1249/MSS.0b013e3181d9cf7f

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Keir DA, Fontana FY, Robertson TC, et al. Exercise intensity thresholds: identifying the boundaries of sustainable performance. Med Sci Sports Exerc. 2015;47(9):19321940. PubMed ID: 25606817 doi:10.1249/MSS.0000000000000613

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    McLellan TM, Cheung KS. A comparative evaluation of the individual anaerobic threshold and the critical power. Med Sci Sports Exerc. 1992;24(5):543550. PubMed ID: 1569851 doi:10.1249/00005768-199205000-00008

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Dekerle J, Baron B, Dupont L, Vanvelcenaher J, Pelayo P. Maximal lactate steady state, respiratory compensation threshold and critical power. Eur J Appl Physiol. 2003;89(3):281288. doi:10.1007/s00421-002-0786-y

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Keir DA, Iannetta D, Mattioni Maturana F, Kowalchuk JM, Murias JM. Identification of non-invasive exercise thresholds: methods, strategies, and an online app. Sports Medicine. 2022;55(2):237–255. PubMed ID: 34694596 doi:10.1007/s40279-021-01581-z

    • Search Google Scholar
    • Export Citation
  • 31.

    Rabadán M, Díaz V, Calderón FJ, Benito PJ, Peinado AB, Maffulli N. Physiological determinants of speciality of elite middle-and long-distance runners. J Sports Sci. 2011;29(9):975982. PubMed ID: 21604227 doi:10.1080/02640414.2011.571271

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Vanhatalo A, Doust JH, Burnley M. Determination of critical power using a 3-min all-out cycling test. Med Sci Sports Exerc. 2007;39(3):548555. PubMed ID: 17473782 doi:10.1249/mss.0b013e31802dd3e6

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Bergstrom HC, Housh TJ, Zuniga JM, et al. The relationships among critical power determined from a 3-min all-out test, respiratory compensation point, gas exchange threshold, and ventilatory threshold. Res Q Exerc Sport. 2013;84(2):232238. PubMed ID: 23930549 doi:10.1080/02701367.2013.784723

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Gama MCT, Dos Reis IGM, Sousa FADB, Gobatto CA. The 3-min all-out test is valid for determining critical power but not anaerobic work capacity in tethered running. PLoS One. 2018;13(2):e0192552. PubMed ID: 29444141 doi:10.1371/journal.pone.0192552

    • Search Google Scholar
    • Export Citation
  • 35.

    Morton RH. Critical power test for ramp exercise. Eur J Appl Physiol. 1995;71(4):379380. PubMed ID: 8549584 doi:10.1007/BF00240421

  • 36.

    Pepper ML, Housh TJ, Johnson GO. The accuracy of the critical velocity test for predicting time to exhaustion during treadmill running. Int J Sports Med. 1992;13(2):121124. doi:10.1055/s-2007-1021242

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Beneke R. Methodological aspects of maximal lactate steady state—implications for performance testing. Eur J Appl Physiol. 2003;89(1):9599. PubMed ID: 12627312 doi:10.1007/s00421-002-0783-1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Hill DW, Poole DC, Smith JC. The relationship between power and the time to achieve VO2max. Med Sci Sports Exerc. 2002;34(4):709714. PubMed ID: 11932583

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Aubry RL, Power GA, Burr JF. An assessment of running power as a training metric for elite and recreational runners. J Strength Cond Res. 2018;32(8):22582264. PubMed ID: 29912073 doi:10.1519/JSC.0000000000002650

    • Search Google Scholar
    • Export Citation
  • 40.

    Sinclair J, Fau-Goodwin J, Richards J, Shore H. The influence of minimalist and maximalist footwear on the kinetics and kinematics of running. Footwear Sci. 2016;8(1):3339. doi:10.1080/19424280.2016.1142003

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4387 1312 102
Full Text Views 171 108 1
PDF Downloads 155 41 2