Specific Adaptations to 0%, 15%, 25%, and 50% Velocity-Loss Thresholds During Bench Press Training

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Luis Rodiles-GuerreroPhysical Performance & Sports Research Center, Department of Sports and Computer Sciences, Universidad Pablo de Olavide, Seville, Spain
Faculty of Sport Sciences, Department of Sports and Computer Sciences, Universidad Pablo de Olavide, Seville, Spain

Search for other papers by Luis Rodiles-Guerrero in
Current site
Google Scholar
PubMed
Close
,
Pedro Jesús Cornejo-DazaPhysical Performance & Sports Research Center, Department of Sports and Computer Sciences, Universidad Pablo de Olavide, Seville, Spain
Faculty of Sport Sciences, Department of Sports and Computer Sciences, Universidad Pablo de Olavide, Seville, Spain

Search for other papers by Pedro Jesús Cornejo-Daza in
Current site
Google Scholar
PubMed
Close
,
Juan Sánchez-ValdepeñasPhysical Performance & Sports Research Center, Department of Sports and Computer Sciences, Universidad Pablo de Olavide, Seville, Spain
Faculty of Sport Sciences, Department of Sports and Computer Sciences, Universidad Pablo de Olavide, Seville, Spain

Search for other papers by Juan Sánchez-Valdepeñas in
Current site
Google Scholar
PubMed
Close
,
Julian AlcazarGENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain
CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain

Search for other papers by Julian Alcazar in
Current site
Google Scholar
PubMed
Close
,
Carlos Rodriguez-LópezGENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain
CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain

Search for other papers by Carlos Rodriguez-López in
Current site
Google Scholar
PubMed
Close
,
Miguel Sánchez-MorenoDepartment of Physical Education and Sports, University of Seville, Seville, Spain

Search for other papers by Miguel Sánchez-Moreno in
Current site
Google Scholar
PubMed
Close
,
Luis María AlegreGENUD Toledo Research Group, Universidad de Castilla-La Mancha, Toledo, Spain
CIBER of Frailty and Healthy Aging (CIBERFES), Madrid, Spain

Search for other papers by Luis María Alegre in
Current site
Google Scholar
PubMed
Close
,
Juan A. León-PradosPhysical Performance & Sports Research Center, Department of Sports and Computer Sciences, Universidad Pablo de Olavide, Seville, Spain
Faculty of Sport Sciences, Department of Sports and Computer Sciences, Universidad Pablo de Olavide, Seville, Spain

Search for other papers by Juan A. León-Prados in
Current site
Google Scholar
PubMed
Close
, and
Fernando Pareja-BlancoPhysical Performance & Sports Research Center, Department of Sports and Computer Sciences, Universidad Pablo de Olavide, Seville, Spain
Faculty of Sport Sciences, Department of Sports and Computer Sciences, Universidad Pablo de Olavide, Seville, Spain

Search for other papers by Fernando Pareja-Blanco in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Purpose: To compare the effect of 4 velocity-loss (VL) thresholds—0% (VL0), 15% (VL15), 25% (VL25), and 50% (VL50)—on strength gains, neuromuscular adaptations, and muscle hypertrophy during the bench press (BP) exercise using intensities ranging from 55% to 70% of 1-repetition maximum (1RM). Methods: Fifty resistance-trained men were randomly assigned to 4 groups that followed an 8-week (16 sessions) BP training program at 55% to 70% 1RM but differed in the VL allowed in each set (VL0, VL15, VL25, and VL50). Assessments performed before (pre) and after (post) the training program included (1) cross-sectional area of pectoralis major muscle, (2) maximal isometric test, (3) progressive loading test, and (4) fatigue test in the BP exercise. Results: A significant group × time interaction was found for 1RM (P = .01), where all groups except VL0 showed significant gains in 1RM strength (P < .001). The VL25 group attained the greatest gains in 1RM strength and most load–velocity relationship parameters analyzed. A significant group × time interaction was observed for EMG root mean square in pectoralis major (P = .03) where only the VL25 group showed significant increases (P = .02). VL50 showed decreased EMG root mean square in triceps brachii (P = .006). Only the VL50 group showed significant increases in cross-sectional area (P < .001). Conclusions: These findings indicate that a VL threshold of about 25% with intensities from 55% to 70% 1RM in BP provides an optimal training stimulus to maximize dynamic strength performance and neuromuscular adaptations, while higher VL thresholds promote higher muscle hypertrophy.

Pareja-Blanco (fparbla@upo.es) is corresponding author, https://orcid.org/0000-0001-7184-7610

  • Collapse
  • Expand
  • 1.

    Gonzalez-Badillo JJ, Yanez-Garcia JM, Mora-Custodio R, Rodriguez-Rosell D. Velocity loss as a variable for monitoring resistance exercise. Int J Sports Med. 2017;38(3):217225. PubMed ID: 28192832 doi:10.1055/s-0042-120324

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Rodriguez-Rosell D, Yanez-Garcia JM, Sanchez-Medina L, Mora-Custodio R, Gonzalez-Badillo JJ. Relationship between velocity loss and repetitions in reserve in the bench press and back squat exercises. J Strength Cond Res. 2020;34(9):25372547. PubMed ID: 31045753 doi:10.1519/JSC.0000000000002881

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Pareja-Blanco F, Alcazar J, Sánchez-Valdepeñas, J, et al. Velocity loss as a critical variable determining the adaptations to strength training. Med Sci Sports Exerc. 2020;52(8):17521762. PubMed ID: 32049887 doi:10.1249/MSS.0000000000002295

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Pareja-Blanco F, Rodriguez-Rosell D, Sanchez-Medina L, et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sports. 2017;27(7):724735. PubMed ID: 27038416 doi:10.1111/sms.12678

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Rodiles-Guerrero L, Pareja-Blanco F, Leon-Prados JA. Effect of velocity loss on strength performance in bench press using a weight stack machine. Int J Sports Med. 2020;41(13):921928. PubMed ID: 32668476 doi:10.1055/a-1179-5849

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Pareja-Blanco F, Alcazar J, Cornejo-Daza PJ, et al. Effects of velocity loss in the bench press exercise on strength gains, neuromuscular adaptations and muscle hypertrophy. Scand J Med Sci Sports. 2020;30(11):21542166. PubMed ID: 32681665 doi:10.1111/sms.13775

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Schneider CA, Rasband WS, Eliceiri KW. NIH image to imagej: 25 years of image analysis. Nat Methods. 2012;9(7):671675. PubMed ID: 22930834 doi:10.1038/nmeth.2089

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Konrad P. The ABC of EMG. In: A Practical Introduction to Kinesiological ElectromyographyNoraxon; 2005: ISBN 0-9771622-1-4.

  • 9.

    Sanchez-Medina L, Perez CE, Gonzalez-Badillo JJ. Importance of the propulsive phase in strength assessment. Int J Sports Med. 2010;31(2):123129. PubMed ID: 20222005 doi:10.1055/s-0029-1242815

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Hedges LV, Olkin O. Statistical Methods for Meta-Analysis. Academic Press; 1985.

  • 11.

    Schoenfeld BJ, Wilson JM, Lowery RP, Krieger JW. Muscular adaptations in low- versus high-load resistance training: a meta-analysis. Eur J Sport Sci. 2016;16(1):110. PubMed ID: 25530577 doi:10.1080/17461391.2014.989922

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Duffey MJ, Challis JH. Fatigue effects on bar kinematics during the bench press. J Strength Cond Res. 2007;21:556560. PubMed ID: 17530967 doi:10.1519/R-19885.1

    • Search Google Scholar
    • Export Citation
  • 13.

    Izquierdo M, Gonzalez-Badillo JJ, Hakkinen K, et al. Effect of loading on unintentional lifting velocity declines during single sets of repetitions to failure during upper and lower extremity muscle actions. Int J Sports Med. 2006;27(9):718724. PubMed ID: 16944400 doi:10.1055/s-2005-872825

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Sanchez-Medina L, Gonzalez-Badillo JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc. 2011;43:17251734. PubMed ID: 21311352 doi:10.1249/MSS.0b013e318213f880

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Girman JC, Jones MT, Matthews TD, Wood RJ. Acute effects of a cluster-set protocol on hormonal, metabolic and performance measures in resistance-trained males. Eur J Sport Sci. 2014;14(2):151159. PubMed ID: 24533522 doi:10.1080/17461391.2013.775351

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Pareja-Blanco F, Rodriguez-Rosell D, Aagaard P, et al. Time course of recovery from resistance exercise with different set configurations. J Strength Cond Res. 2020;34(10):28672876. PubMed ID: 30036284 doi:10.1519/JSC.0000000000002756

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Mitchell CJ, Churchward-Venne TA, West DW, et al. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol. 2012;113(1):7177. doi:10.1152/japplphysiol.00307.2012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Burd NA, Andrews RJ, West DW, et al. Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J Physiol. 2012;590(2):351362. PubMed ID: 22106173 doi:10.1113/jphysiol.2011.221200

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Schoenfeld BJ. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med. 2013;43(3):179194. PubMed ID: 23338987 doi:10.1007/s40279-013-0017-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Martinez-Canton M, Gallego-Selles A, Gelabert-Rebato M, et al. Role of CaMKII and sarcolipin in muscle adaptations to strength training with different levels of fatigue in the set. Scand J Med Sci Sports. 2021;31(1):91103. PubMed ID: 32949027 doi:10.1111/sms.13828

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Rodriguez-Rosell D, Yanez-Garcia JM, Mora-Custodio R, et al. Velocity-based resistance training: impact of velocity loss in the set on neuromuscular performance and hormonal response. Appl Physiol Nutr Metab. 2020;45(8):817828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Lionikas A, Li M, Larsson L. Human skeletal muscle myosin function at physiological and non-physiological temperatures. Acta Physiol. 2006;186(2):151158. doi:10.1111/j.1748-1716.2005.01516.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Tihanyi J, Apor P, Fekete G. Force-velocity-power characteristics and fiber composition in human knee extensor musc les. Eur J Appl Physiol Occup Physiol. 1982;48(3):331343. PubMed ID: 7200876 doi:10.1007/BF00430223

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Gonzalez-Badillo JJ, Gorostiaga EM, Arellano R, Izquierdo M. Moderate resistance training volume produces more favorable strength gains than high or low volumes during a short-term training cycle. J Strength Cond Res. 2005;19(3):689697. PubMed ID: 16095427 doi:10.1519/R-15574.1

    • Search Google Scholar
    • Export Citation
  • 25.

    Gonzalez-Badillo JJ, Izquierdo M, Gorostiaga EM. Moderate volume of high relative training intensity produces greater strength gains compared with low and high volumes in competitive weightlifters. J Strength Cond Res. 2006;20(1):7381. PubMed ID: 16503695 doi:10.1519/R-16284.1

    • Search Google Scholar
    • Export Citation
  • 26.

    Izquierdo M, Ibanez J, Gonzalez-Badillo JJ, et al. Differential effects of strength training leading to failure versus not to failure on hormonal responses, strength, and muscle power gains. J Appl Physiol. 2006;100(5):16471656. doi:10.1152/japplphysiol.01400.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Izquierdo-Gabarren M, Gonzalez De Txabarri Exposito R, Garcia-pallares J, Sanchez-medina L, De Villarreal ES, Izquierdo M. Concurrent endurance and strength training not to failure optimizes performance gains. Med Sci Sports Exerc. 2010;42(6):11911199. PubMed ID: 19997025 doi:10.1249/MSS.0b013e3181c67eec

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Aagaard P, Andersen JL, Dyhre-Poulsen P, et al. A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol. 2001;534(2):613623. PubMed ID: 11454977 doi:10.1111/j.1469-7793.2001.t01-1-00613.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Folland JP, Williams AG. The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med. 2007;37(2):145168. PubMed ID: 17241104 doi:10.2165/00007256-200737020-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Sanchis-Moysi J, Idoate F, Olmedillas H, et al. The upper extremity of the professional tennis player: muscle volumes, fiber-type distribution and muscle strength. Scand J Med Sci Sports. 2010;20(3):524534. PubMed ID: 19602193 doi:10.1111/j.1600-0838.2009.00969.x

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3440 3440 181
Full Text Views 110 110 7
PDF Downloads 193 193 10