Effects of Dryland Training During the COVID-19 Lockdown Period on Swimming Performance

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Gavriil G. ArsoniadisDivision of Aquatic Sports, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece

Search for other papers by Gavriil G. Arsoniadis in
Current site
Google Scholar
PubMed
Close
,
Petros G. BotonisDivision of Aquatic Sports, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
Division of Sport Medicine and Biology of Exercise, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece

Search for other papers by Petros G. Botonis in
Current site
Google Scholar
PubMed
Close
,
Alexandros I. TsoltosPeristeri Sports Club, Athens, Greece

Search for other papers by Alexandros I. Tsoltos in
Current site
Google Scholar
PubMed
Close
,
Alexandros D. ChatzigiannakisPeristeri Sports Club, Athens, Greece

Search for other papers by Alexandros D. Chatzigiannakis in
Current site
Google Scholar
PubMed
Close
,
Gregory C. BogdanisSports Performance Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece

Search for other papers by Gregory C. Bogdanis in
Current site
Google Scholar
PubMed
Close
,
Gerasimos D. TerzisSports Performance Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece

Search for other papers by Gerasimos D. Terzis in
Current site
Google Scholar
PubMed
Close
, and
Argyris G. ToubekisDivision of Aquatic Sports, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
Sports Performance Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece

Search for other papers by Argyris G. Toubekis in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Purpose: To examine the effect of dryland training during an 11-week lockdown period due to COVID-19 on swimming performance. Methods: Twelve competitive swimmers performed 50- and 300-m maximum-effort tests in their preferred stroke and 200-, 400-, and four 50-m front crawl sprints (4 × 50 m) before and after the lockdown period. Critical speed as an index of aerobic endurance was calculated using (1) 50-, 300-, and (2) 200-, 400-m tests. Blood lactate concentration was measured after the 400- and 4 × 50-m tests. To evaluate strength-related abilities, the dryland tests included handgrip and shoulder isometric strength. Tethered swimming force was measured during a 10-second sprint. During the lockdown period, dryland training was applied, and the session rating of perceived exertion training (sRPE) load was recorded daily. Results: sRPE training load during the lockdown was decreased by 78% (16%), and critical speed was reduced 4.7% to 4.9% compared to prelockdown period (P < .05). Performance time in 200, 300, and 400 m deteriorated 2.6% to 3.9% (P < .05), while it remained unaltered in 4 × 50- and 50-m tests (P > .05). Tethered force increased 9% (10%) (P < .01), but handgrip and shoulder isometric force remained unaltered (P > .05). Blood lactate concentration decreased 19% (21%) after the 400-m test and was unchanged following the 4 × 50-m tests (P > .05). Conclusions: Performance deterioration in the 200, 300, and 400 m indicates reduced aerobic fitness and impaired technical ability, while strength and repeated-sprint ability were maintained. When a long abstention from swimming training is forced, dryland training may facilitate preservation in short-distance but not middle-distance swimming performance.

Toubekis (atoubekis@phed.uoa.gr) is corresponding author.

  • Collapse
  • Expand
  • 1.

    Muriel X, Courel-Ibáňez J, Cerezuela-Espejo V, Pallarés JG. Training load and performance impairments in professional cyclists during COVID-19 lockdown. Int J Sports Physiol Perform. 2021;16(5):735738. PubMed ID: 32820136 doi:10.1123/ijspp.2020-0501

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Moreira MF, Morais JE, Marinho DA, Silva AJ, Barbosa TM, Costa MJ. Growth influences biomechanical profile of talented swimmers during the summer break. Sports Biomech. 2014;13(1):6274. PubMed ID: 24968511 doi:10.1080/14763141.2013.865139

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Zacca R, Toubekis A, Freitas L, et al. Effects of detraining in age-group swimmers performance, energetics and kinematics. J Sports Sci. 2019;37(13):14901498. PubMed ID: 30714478 doi:10.1080/02640414.2019.1572434

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Barbosa TM, Costa M, Marinho DA, Coelho J, Moreira M, Silva AJ. Modelling the links between young swimmers’ performance: energetic and biomechanic profiles. Pediatr Exerc Sci. 2010;22(3):379391. PubMed ID: 20814034 doi:10.1123/pes.22.3.379

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Morais JE, Lopes VP, Barbosa TM, Moriyama SI, Marinho DA. How does 11 week detraining affect 11-12 years old swimmers’ biomechanical determinants and its relationship with 100 m freestyle performance? Sports Biomech. 2020;(11)115. PubMed ID: 32131697 doi:10.1080/14763141.2020.1726998

    • Search Google Scholar
    • Export Citation
  • 6.

    Ormsbee MJ, Arciero JP. Detraining increases body fat and weight and decreases VO2peak and metabolic rate. J Strength Cond Res. 2012;26(8):20872095. PubMed ID: 22027854 doi:10.1519/JSC.0b013e31823b874c

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Garrido N, Marinho DA, Reis VM, et al. Does combined dry land strength and aerobic training inhibit performance of young competitive swimmers? J Sports Sci Med. 2010;9:300310. PubMed ID: 24149700

    • Search Google Scholar
    • Export Citation
  • 8.

    Neufer PD, Costill DL, Fielding RA, Flynn MG, Kirwan JP. Effect of reduced training on muscular strength and endurance in competitive swimmers. Med Sci Sports Exerc. 1987;19(5):486490. PubMed ID: 3683154 doi:10.1249/00005768-198710000-00011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Borg GAV. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:10.1249/00005768-198205000-00012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Wallace LK, Slattery KM, Coutts AJ. The ecological validity and application of the session-RPE method for quantifying training loads in swimming. J Strength Cond Res. 2009;23(1):3338. PubMed ID: 19002069 doi:10.1519/JSC.0b013e3181874512

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Weston M, Hibbs AE, Thompson KG, Spears IR. Isolated core training improves sprint performance in national-level junior swimmers. Int J Sports Physiol Perform. 2015;10:204210. PubMed ID: 25025936 doi:10.1123/ijspp.2013-0488

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Jackson AS, Pollock ML. Generalized equations for predicting body density of men. Br J Nutr. 1978;40(3):497504. PubMed ID: 718832 doi:10.1079/BJN19780152

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Mirwald RL, Baxter-Jones ADG, Bailey DA, Beunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34(4):689694. PubMed ID: 11932580 doi:10.1097/00005768-200204000-00020

    • Search Google Scholar
    • Export Citation
  • 14.

    Toubekis AG, Tokmakidis SP. Metabolic responses at various intensities relative to critical swimming velocity. JStrength Cond Res. 2013;27(6):17311741. PubMed ID: 23449237 doi:10.1519/JSC.0b013e31828dde1e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Aujouannet YA, Bonifazi M, Hintzy F, Vuillerme N, Rouard AH. Effects of a high—intensity swim test on kinematic parameters in high level athletes. Appl Physiol Nutr Metab. 2006;31(2):150158. PubMed ID: 16604133 doi:10.1139/h05-012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Barbosa AC, Barroso R, Andries O Jr. Post-activation potentiation in propulsive force after specific swimming strength training. Int J Sports Med. 2016;37(4):313317. PubMed ID: 26667922 doi:10.1055/s-0035-1565050

    • Search Google Scholar
    • Export Citation
  • 17.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Routledge; 1988.

  • 18.

    Faul F, Erdfelder E, Lang AG, Bucher A. G*Power 3: a flexible statistical power analysis program for social, behavioral and biomedical sciences. Behav Res Methods. 2007;39(2):175191. PubMed ID: 17695343 doi:10.3758/BF03193146

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Ogita F. Energetics in competitive swimming and its application for training. Port J Sport Sci. 2006;6(suppl 2):117121.

  • 20.

    Mujika I, Padilla S. Detraining: loss of training-induced physiological and performance adaptations. Part II. Sports Med. 2000;30(3):145154. PubMed ID: 10999420 doi:10.2165/00007256-200030030-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Coyle EF, Martin WH, Sinocore DR, Joyner MJ, Hagberg MJ, Holloszy JO. Time course of loss of adaptations after stopping prolonged intense endurance training. J Appl Physiol. 1984;57(6):18571864. PubMed ID: 6511559 doi:10.1152/jappl.1984.57.6.1857

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Coyle EF, Hemmert MK, Coggan AR. Effects of detraining on cardiovascular responses to exercise role of blood volume. J Appl Physiol. 1986;60(1):9599. PubMed ID: 3944049 doi:10.1152/jappl.1986.60.1.95

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Toubekis AG, Drosou E, Gourgoulis V, Thomaidis S, Douda H, Tokmakidis, SP. Competitive performance, training load and physiological responses during tapering in young swimmers. J Hum Kinet. 2013;38:125134. PubMed ID: 24233022 doi:10.2478/hukin-2013-0052

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Peyrebrune MC, Toubekis AG, Lakomy HKA, Nevill ME. Estimating the energy contribution during single and repeated sprint swimming. Scand J Med Sci Sports. 2014;24(2):369376. PubMed ID: 22897515 doi:10.1111/j.1600-0838.2012.01517.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Pinos AJ, Bentley DJ, Logan-Sprenger HM. Effects of anaerobic swim ergometer on sprint performance in adolescent swimmers. Int J Sports Physiol Perform. 2021;16(8):11691174. doi:10.1123/ijspp.2020-0591

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Collins H, Booth JN, Duncan A, Fawkner S. The effect of resistance training interventions on fundamental movement skills in youth: a meta-analysis. Sports Med Open. 2019;5(17):116.

    • Search Google Scholar
    • Export Citation
  • 27.

    Pelayo P, Mujika I, Sidney M, Chatard JC. Blood lactate recovery measurements, training, and performance during a 23-week period of competitive swimming. Eur J Appl Physiol Occup Physiol. 1996;74(1):107113. doi:10.1007/BF00376502

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Costill DL, Fink WJ, Hargreaves M, King DS, Thomas R, Fielding R. Metabolic characteristics of skeletal muscle during detraining from competitive swimming. Med Sci Sports Exerc. 1985;17(3):339343. PubMed ID: 3160908 doi:10.1249/00005768-198506000-00007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Johnson RE, Sharp RL, Hedrick CE. Relationship of swimming power and dryland power to sprint freestyle performance. J Swim Res. 1993;9(1):1014.

    • Search Google Scholar
    • Export Citation
  • 30.

    Morouço P, Keskinen KL, Vilas-Boas JP, Fernandes RJ. Relationship between tethered forces and the four swimming techniques performance. J Appl Biomech. 2011;27:161169. PubMed ID: 21576725 doi:10.1123/jab.27.2.161

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Pelayo P, Alberty M, Sidney M, Potdevin F, Dekerle J. Aerobic potential, stroke parameters, and coordination in swimming front-crawl performance. Int J Sports Physiol Perform. 2007;2(4):347359. PubMed ID: 19171953 doi:10.1123/ijspp.2.4.347

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Seifert L, Carmigniani R. Coordination and stroking parameters in the four swimming techniques: a narrative review. Sports Biomech. Advance online publication. PubMed ID: 34372755 doi:10.1080/14763141.2021.1959945

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1620 1620 161
Full Text Views 38 38 2
PDF Downloads 53 53 2