Self-Paced Cycling at the Highest Sustainable Intensity With Blood Flow Restriction Reduces External but Not Internal Training Loads

in International Journal of Sports Physiology and Performance
View More View Less
  • 1 Centre for Healthy Ageing, Murdoch University, Perth, WA, Australia
  • | 2 Murdoch Applied Sports Science Laboratory, Discipline of Exercise Science, Murdoch University, Perth, WA, Australia
  • | 3 School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, WA, Australia
Restricted access

Purpose: This study compared training loads and internal:external load ratios from an aerobic interval session at the highest perceptually sustainable intensity with and without blood flow restriction (BFR). Methods: On separate days, 14 endurance cyclists/triathletes completed four 4-minute self-paced aerobic cycling intervals at their highest sustainable intensity, with and without BFR (60% of arterial occlusion pressure). Internal training load was quantified using 3 training impulses (TRIMP; Banister, Lucia, and Edwards) and sessional ratings of perceived exertion. External load was assessed using total work done (TWD). Training load ratios between all internal loads were calculated relative to TWD. Results: Lucia TRIMP was lower for the BFR compared with non-BFR session (49 [9] vs 53 [8] arbitrary units [au], P = .020, dz = −0.71). No between-conditions differences were observed for Banister TRIMP (P = .068), Edwards TRIMP (P = .072), and training load in sessional ratings of perceived exertion (P = .134). The TWD was lower for the BFR compared with non-BFR session (223 [52] vs 271 [58] kJ, P < .001, dz = −1.27). Ratios were greater for the BFR session compared with non-BFR for Lucia TRIMP:TWD (0.229 [0.056] vs 0.206 [0.056] au, P < .001, dz = 1.21), Edwards TRIMP:TWD (0.396 [0.105] vs 0.370 [0.088] au, P = .031, dz = 0.66), and training load in sessional ratings of perceived exertion:TWD (1.000 [0.266] vs 0.890 [0.275] au, P = .044, dz = 0.60), but not Banister TRIMP:TWD (P = .306). Conclusions: Practitioners should consider both internal and external loads when monitoring BFR exercise to ensure the demands are appropriately captured. These BFR-induced changes were reflected by the Lucia TRIMP:TWD and Edwards TRIMP:TWD ratio, which could be used to monitor aerobic BFR training loads. The Lucia TRIMP:TWD ratio likely represents BFR-induced changes more appropriately compared with ratios involving either Edwards or Banister TRIMP.

  • 1.

    de Oliveira MF, Caputo F, Corvino RB, Denadai BS. Short-term low-intensity blood flow restricted interval training improves both aerobic fitness and muscle strength. Scand J Med Sci Sport. 2016;26(9):10171025. PubMed ID: 26369387 doi:10.1111/sms.12540

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586(1):3544. PubMed ID: 17901124 doi:10.1113/jphysiol.2007.143834

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Smith NDW, Scott BR, Girard O, Peiffer JJ. Aerobic training with blood flow restriction for endurance athletes: potential benefits and considerations of implementation. J Strength Cond Res. Advance online publication. PubMed ID: 34175880 doi:10.1519/JSC.0000000000004079

    • Search Google Scholar
    • Export Citation
  • 4.

    Ferguson RA, Mitchell EA, Taylor CW, Bishop DJ, Christiansen D. Blood-flow-restricted exercise: strategies for enhancing muscle adaptation and performance in the endurance-trained athlete. Exp Physiol. 2021;106(4):837860. PubMed ID: 33486814 doi:10.1113/EP089280

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Halson SL. Monitoring training load to understand fatigue in athletes. Sports Med. 2014;44(suppl 2):S139S147. doi:10.1007/s40279-014-0253-z

  • 6.

    Jeukendrup AE, Hesselink MK, Snyder AC, Kuipers H, Keizer HA. Physiological changes in male competitive cyclists after two weeks of intensified training. Int J Sports Med. 1992;13(7):534541. PubMed ID: 1459749 doi:10.1055/s-2007-1021312

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Silva JCG, Domingos-Gomes JR, Freitas EDS, et al. Physiological and perceptual responses to aerobic exercise with and without blood flow restriction. J Strength Cond Res. 2021;35(9):24792485. PubMed ID: 31136546 doi:10.1519/JSC.0000000000003178

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Ozaki H, Brechue WF, Sakamaki M, et al. Metabolic and cardiovascular responses to upright cycle exercise with leg blood flow reduction. J Sports Sci Med. 2010;9(2):224230. PubMed ID: 24149689

    • Search Google Scholar
    • Export Citation
  • 9.

    Thomas HJ, Scott BR, Peiffer JJ. Acute physiological responses to low-intensity blood flow restriction cycling. J Sci Med Sport. 2018;21(9):969974. PubMed ID: 29650336 doi:10.1016/j.jsams.2018.01.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Bourdon PC, Cardinale M, Murray A, et al. Monitoring athlete training loads: consensus statement. Int J Sports Physiol Perform. 2017;12(suppl):S2161S2170. doi:10.1123/IJSPP.2017-0208

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Mujika I. Quantification of training and competition loads in endurance sports: methods and applications. Int J Sports Physiol Perform. 2017;12(suppl):S29S217. doi:10.1123/ijspp.2016-0403

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Banister EW. Modeling elite athletic performance. In: Green HJ, Wenger HA, eds. Physiological Testing of Elite Athletes. Vol 347. Human Kinetics; 1991:403422.

    • Search Google Scholar
    • Export Citation
  • 13.

    Edwards S. High performance training and racing. In: Edwards S, ed. The Heart Rate Monitor Book. 8th ed. Feet Fleet Press; 1993:113123.

    • Search Google Scholar
    • Export Citation
  • 14.

    Lucia A, Hoyos J, Perez M, Chicharro JL. Heart rate and performance parameters in elite cyclists: a longitudinal study. Med Sci Sports Exerc. 2000;32(10):17771782. PubMed ID: 11039652 doi:10.1097/00005768-200010000-00018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Foster C. Monitoring training in athletes with reference to overtraining syndrome. Med Sci Sports Exerc. 1998;30(7):11641168. PubMed ID: 9662690 doi:10.1097/00005768-199807000-00023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Corvino RB, Rossiter HB, Loch T, Martins JC, Caputo F. Physiological responses to interval endurance exercise at different levels of blood flow restriction. Eur J Appl Physiol. 2017;117(1):3952. PubMed ID: 27826654 doi:10.1007/s00421-016-3497-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Wallace LK, Slattery KM, Impellizzeri FM, Coutts AJ. Establishing the criterion validity and reliability of common methods for quantifying training load. J Strength Cond Res. 2014;28(8):23302337. PubMed ID: 24662229 doi:10.1519/JSC.0000000000000416

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Willis SJ, Alvarez L, Borrani F, Millet GP. Oxygenation time course and neuromuscular fatigue during repeated cycling sprints with bilateral blood flow restriction. Physiol Rep. 2018;6(19):e13872. PubMed ID: 30295004 doi:10.14814/phy2.13872

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Seiler S, Sjursen JE. Effect of work duration on physiological and rating scale of perceived exertion responses during self-paced interval training. Scand J Med Sci Sport. 2004;14(5):318325. PubMed ID: 15387806 doi:10.1046/j.1600-0838.2003.00353.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    De Pauw K, Roelands B, Cheung SS, de Geus B, Rietjens G, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111122. PubMed ID: 23428482 doi:10.1123/ijspp.8.2.111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Decroix L, De Pauw K, Foster C, Meeusen R. Guidelines to classify female subject groups in sport-science research. Int J Sports Physiol Perform. 2016;11(2):204213. PubMed ID: 26182438 doi:10.1123/ijspp.2015-0153

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Smith NDW, Girard O, Scott BR, Peiffer JJ. Blood flow restriction during self-paced aerobic intervals reduces mechanical and cardiovascular demands without modifying neuromuscular fatigue. Eur J Sport Sci. Advance online publication. doi:10.1080/17461391.2022.2062056

    • Search Google Scholar
    • Export Citation
  • 23.

    Lucía A, Joyos H, Chicharro JL. Physiological response to professional road cycling: climbers vs. time trialists. Int J Sports Med. 2000;21(7):505512. PubMed ID: 11071054 doi:10.1055/s-2000-7420

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Peiffer JJ, Abbiss CR, Chapman D, Laursen PB, Parker DL. Physiological characteristics of masters-level cyclists. J Strength Cond Res. 2008;22(5):14341440. PubMed ID: 18714246 doi:10.1519/JSC.0b013e318181a0d2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Seiler S, Sylta O. How does interval-training prescription affect physiological and perceptual responses? Int J Sports Physiol Perform. 2017;12(suppl):S280S286. doi:10.1123/ijspp.2016-0464

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Sakamaki-Sunaga M, Loenneke JP, Thiebaud RS, Abe T. Onset of blood lactate accumulation and peak oxygen uptake during graded walking test combined with and without restricted leg blood flow. Comp Exerc Physiol. 2012;8(2):117122. doi:10.3920/CEP12007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Loenneke JP, Allen KM, Mouser JG, et al. Blood flow restriction in the upper and lower limbs is predicted by limb circumference and systolic blood pressure. Eur J Appl Physiol. 2015;115(2):397405. PubMed ID: 25338316 doi:10.1007/s00421-014-3030-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Borg G, Hassmén P, Lagerström M. Perceived exertion related to heart rate and blood lactate during arm and leg exercise. Eur J Appl Physiol Occup Physiol. 1987;56(6):679685. PubMed ID: 3678222 doi:10.1007/BF00424810

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol. 2013;4:863. PubMed ID: 24324449 doi:10.3389/fpsyg.2013.00863

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Valenzuela PL, Sánchez-Martínez G, Torrontegi E, et al. Acute responses to on-court repeated-sprint training performed with blood flow restriction versus systemic hypoxia in elite badminton athletes. Int J Sports Physiol Perform. 2019;14(9):12801287. doi:10.1123/ijspp.2018-0878

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Rossow LM, Fahs CA, Loenneke JP, et al. Cardiovascular and perceptual responses to blood-flow-restricted resistance exercise with differing restrictive cuffs. Clin Physiol Funct Imaging. 2012;32(5):331337. PubMed ID: 22856338 doi:10.1111/j.1475-097X.2012.01131.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Pearson SJ, Hussain SR. A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med. 2015;45(2):187200. PubMed ID: 25249278 doi:10.1007/s40279-014-0264-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Suga T, Okita K, Morita N, et al. Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. J Appl Physiol. 2009;106(4):11191124. doi:10.1152/japplphysiol.90368.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Alam M, Smirk FH. Observations in man on a pulse-accelerating reflex from the voluntary muscles of the legs. J Physiol. 1938;92(2):167177. PubMed ID: 16994964 doi:10.1113/jphysiol.1938.sp003592

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Seiler S, Tønnessen E. Intervals, thresholds, and long slow distance: the role of intensity and duration in endurance training. Sportscience. 2009;13:3253.

    • Search Google Scholar
    • Export Citation
  • 36.

    Takarada Y, Nakamura Y, Aruga S, Onda T, Miyazaki S, Ishii N. Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol. 2000;88(1):6165. PubMed ID: 10642363 doi:10.1152/jappl.2000.88.1.61

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 584 584 319
Full Text Views 43 43 21
PDF Downloads 56 56 37