Four Weeks of Power Optimized Sprint Training Improves Sprint Performance in Adolescent Soccer Players

Click name to view affiliation

Mikael Derakhti
Search for other papers by Mikael Derakhti in
Current site
Google Scholar
PubMed
Close
,
Domen Bremec
Search for other papers by Domen Bremec in
Current site
Google Scholar
PubMed
Close
,
Tim Kambič
Search for other papers by Tim Kambič in
Current site
Google Scholar
PubMed
Close
,
Lasse Ten Siethoff
Search for other papers by Lasse Ten Siethoff in
Current site
Google Scholar
PubMed
Close
, and
Niklas Psilander
Search for other papers by Niklas Psilander in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: This study compared the effects of heavy resisted sprint training (RST) versus unresisted sprint training (UST) on sprint performance among adolescent soccer players. Methods: Twenty-four male soccer players (age: 15.7 [0.5] y; body height: 175.7 [9.4] cm; body mass: 62.5 [9.2] kg) were randomly assigned to the RST group (n = 8), the UST group (n = 10), or the control group (n = 6). The UST group performed 8 × 20 m unresisted sprints twice weekly for 4 weeks, whereas the RST group performed 5 × 20-m heavy resisted sprints with a resistance set to maximize the horizontal power output. The control group performed only ordinary soccer training and match play. Magnitude-based decision and linear regression were used to analyze the data. Results: The RST group improved sprint performances with moderate to large effect sizes (0.76–1.41) across all distances, both within and between groups (>92% beneficial effect likelihood). Conversely, there were no clear improvements in the UST and control groups. The RST evoked the largest improvements over short distances (6%–8%) and was strongly associated with increased maximum horizontal force capacities (r = .9). Players with a preintervention deficit in force capacity appeared to benefit the most from RST. Conclusions: Four weeks of heavy RST led to superior improvements in short-sprint performance compared with UST among adolescent soccer players. Heavy RST, using a load individually selected to maximize horizontal power, is therefore highly recommended as a method to improve sprint acceleration in youth athletes.

Derakhti, Bremec, Siethoff, and Psilander are with The Swedish School of Sport and Health Sciences, Stockholm, Sweden. Bremec is also with the SuperTrening Sport Performance Centre, Celje, Slovenia. Kambič is with the Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia; and the General Hospital Murska Sobota, Murska Sobota, Slovenia.

Psilander (niklas.psilander@gih.se) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Schimpchen J, Skorski S, Nopp S, Meyer T. Are “classical” tests of repeated-sprint ability in football externally valid? A new approach to determine in-game sprinting behaviour in elite football players. J Sports Sci. 2016;34(6):519526. PubMed ID: 26580089 doi:10.1080/02640414.2015.1112023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Spencer M, Bishop D, Dawson B, Goodman C. Physiological and metabolic responses of repeated-sprint activities: specific to field-based team sports. Sports Med. 2005;35(12):10251044. PubMed ID: 16336007 doi:10.2165/00007256-200535120-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Vigne G, Gaudino C, Rogowski I, Alloatti G, Hautier C. Activity profile in elite Italian soccer team. Int J Sports Med. 2010;31(5):304310. PubMed ID: 20301042 doi:10.1055/s-0030-1248320

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Alcaraz PE, Carlos-Vivas J, Oponjuru BO, Martinez-Rodriguez A. The effectiveness of resisted sled training (RST) for sprint performance: a systematic review and meta-analysis. Sports Med. 2018;48(9):21432165. PubMed ID: 29926369 doi:10.1007/s40279-018-0947-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Cometti G, Maffiuletti NA, Pousson M, Chatard JC, Maffulli N. Isokinetic strength and anaerobic power of elite, subelite and amateur French soccer players. Int J Sports Med. 2001;22(1):4551. PubMed ID: 11258641 doi:10.1055/s-2001-11331

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Bangsbo J, Mohr M, Krustrup P. Physical and metabolic demands of training and match-play in the elite football player. J Sports Sci. 2006;24(7):665674. PubMed ID: 16766496 doi:10.1080/02640410500482529

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Haugen T, Tonnessen E, Hisdal J, Seiler S. The role and development of sprinting speed in soccer. Int J Sports Physiol Perform. 2014;9(3):432441. PubMed ID: 23982902 doi:10.1123/ijspp.2013-0121

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Stolen T, Chamari K, Castagna C, Wisloff U. Physiology of soccer: an update. Sports Med. 2005;35(6):501536. PubMed ID: 15974635 doi:10.2165/00007256-200535060-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Morin JB, Bourdin M, Edouard P, Peyrot N, Samozino P, Lacour JR. Mechanical determinants of 100-m sprint running performance. Eur J Appl Physiol. 2012;112(11):39213930. PubMed ID: 22422028 doi:10.1007/s00421-012-2379-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Colyer SL, Nagahara R, Takai Y, Salo AIT. How sprinters accelerate beyond the velocity plateau of soccer players: waveform analysis of ground reaction forces. Scand J Med Sci Sports. 2018;28(12):25272535. PubMed ID: 30230037 doi:10.1111/sms.13302

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Cross MR, Tinwala F, Lenetsky S, et al. Assessing horizontal force production in resisted sprinting: computation and practical interpretation. Int J Sports Physiol Perform. 2019;14(5):689693. PubMed ID: 30975007 doi:10.1123/ijspp.2018-0578

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Cross MR, Samozino P, Brown SR, Morin JB. A comparison between the force-velocity relationships of unloaded and sled-resisted sprinting: single vs. multiple trial methods. Eur J Appl Physiol. 2018;118(3):563571. PubMed ID: 29302753 doi:10.1007/s00421-017-3796-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Alcaraz PE, Palao JM, Elvira JL. Determining the optimal load for resisted sprint training with sled towing. J Strength Cond Res. 2009;23(2):480485. PubMed ID: 19197200 doi:10.1519/JSC.0b013e318198f92c

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Lockie RG, Murphy AJ, Spinks CD. Effects of resisted sled towing on sprint kinematics in field-sport athletes. J Strength Cond Res. 2003;17(4):760767. PubMed ID: 14636109

    • Search Google Scholar
    • Export Citation
  • 15.

    Petrakos G, Morin JB, Egan B. Resisted sled sprint training to improve sprint performance: a systematic review. Sports Med. 2016;46(3):381400. PubMed ID: 26553497 doi:10.1007/s40279-015-0422-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Cross MR, Brughelli M, Samozino P, Morin JB. Methods of power-force-velocity profiling during sprint running: a narrative review. Sports Med. 2017;47(7):12551269. PubMed ID: 27896682 doi:10.1007/s40279-016-0653-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Kawamori N, Newton RU, Hori N, Nosaka K. Effects of weighted sled towing with heavy versus light load on sprint acceleration ability. J Strength Cond Res. 2014;28(10):27382745. PubMed ID: 23539079 doi:10.1519/JSC.0b013e3182915ed4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Morin JB, Petrakos G, Jimenez-Reyes P, Brown SR, Samozino P, Cross MR. Very-heavy sled training for improving horizontal-force output in soccer players. Int J Sports Physiol Perform. 2017;12(6):840844. doi:10.1123/ijspp.2016-0444

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Cross MR, Brughelli M, Samozino P, Brown SR, Morin JB. Optimal loading for maximizing power during sled-resisted sprinting. Int J Sports Physiol Perform. 2017;12(8):10691077. PubMed ID: 28051333 doi:10.1123/ijspp.2016-0362

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Cahill MJ, Oliver JL, Cronin JB, Clark KP, Cross MR, Lloyd RS. Influence of resisted sled-push training on the sprint force-velocity profile of male high school athletes. Scand J Med Sci Sports. 2020;30(3):442449. PubMed ID: 31742795 doi:10.1111/sms.13600

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Cahill MJ, Oliver JL, Cronin JB, et al. Influence of resisted sled-pull training on the sprint force-velocity profile of male high-school athletes. J Strength Cond Res. 2020;34(10):27512759. PubMed ID: 32773545 doi:10.1519/JSC.0000000000003770

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Morin JB, Samozino P. Interpreting power-force-velocity profiles for individualized and specific training. Int J Sports Physiol Perform. 2016;11(2):267272. PubMed ID: 26694658 doi:10.1123/ijspp.2015-0638

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Samozino P, Rabita G, Dorel S, et al. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand J Med Sci Sports. 2016;26(6):648658. PubMed ID: 25996964 doi:10.1111/sms.12490

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Cross MR, Lahti J, Brown SR, et al. Training at maximal power in resisted sprinting: optimal load determination methodology and pilot results in team sport athletes. PLoS One. 2018;13(4):e0195477. PubMed ID: 29641589 doi:10.1371/journal.pone.0195477

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Lahti J, Jimenez-Reyes P, Cross MR, et al. Individual sprint force-velocity profile adaptations to in-season assisted and resisted velocity-based training in professional rugby. Sports. 2020;8(5):74. doi:10.3390/sports8050074

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Lahti J, Huuhka T, Romero V, Bezodis I, Morin JB, Hakkinen K. Changes in sprint performance and sagittal plane kinematics after heavy resisted sprint training in professional soccer players. Peer J. 2020;8:e10507. PubMed ID: 33362970 doi:10.7717/peerj.10507

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Simpson A, Waldron M, Cushion E, Tallent J. Optimised force-velocity training during pre-season enhances physical performance in professional rugby league players. J Sports Sci. 2021;39(1):91100. PubMed ID: 32799729 doi:10.1080/02640414.2020.1805850

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Morin JB, Capelo-Ramirez F, Rodriguez-Perez MA, Cross MR, Jimenez-Reyes P. Individual adaptation kinetics following heavy resisted sprint training. J Strength Cond Res. 2020. PubMed ID 32058358 doi:10.1519/jsc.0000000000003546

    • Search Google Scholar
    • Export Citation
  • 29.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):312. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Sainani KL. The problem with “magnitude-based inference.” Med Sci Sports Exerc. 2018;50(10):21662176. PubMed ID: 29683920 doi:10.1249/MSS.0000000000001645

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Batterham AM, Hopkins WG. The problems with “the problem with ‘magnitude-based inference.’” Med Sci Sports Exerc. 2019;51(3):599. PubMed ID: 30365421 doi:10.1249/MSS.0000000000001823

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Cahill MJ, Oliver JL, Cronin JB, Clark KP, Cross MR, Lloyd RS. Sled-pull load-velocity profiling and implications for sprint training prescription in young male athletes. Sports. 2019;7(5):119. doi:10.3390/sports7050119

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Meyers RW, Oliver JL, Hughes MG, Lloyd RS, Cronin JB. The influence of maturation on sprint performance in boys over a 21-month period. Med Sci Sports Exerc. 2016;48(12):25552562. PubMed ID: 27434083 doi:10.1249/MSS.0000000000001049

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Issurin VB. Benefits and limitations of block periodized training approaches to athletes’ preparation: a review. Sports Med. 2016;46(3):329338. PubMed ID: 26573916 doi:10.1007/s40279-015-0425-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Buchheit M, Samozino P, Glynn JA, et al. Mechanical determinants of acceleration and maximal sprinting speed in highly trained young soccer players. J Sports Sci. 2014;32(20):19061913. PubMed ID: 25356503 doi:10.1080/02640414.2014.965191

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Rabita G, Dorel S, Slawinski J, et al. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports. 2015;25(5):583594. PubMed ID: 25640466 doi:10.1111/sms.12389

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5406 1212 61
Full Text Views 163 38 2
PDF Downloads 223 37 3