Gastrointestinal Hormones, Morphological Characteristics, and Physical Performance in Elite Soccer Players

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Iyed Salhi
Search for other papers by Iyed Salhi in
Current site
Google Scholar
PubMed
Close
,
Abderraouf Ben Aabderrahman
Search for other papers by Abderraouf Ben Aabderrahman in
Current site
Google Scholar
PubMed
Close
,
Raoua Triki
Search for other papers by Raoua Triki in
Current site
Google Scholar
PubMed
Close
,
Cain C.T. Clark
Search for other papers by Cain C.T. Clark in
Current site
Google Scholar
PubMed
Close
,
Sabri Gaed
Search for other papers by Sabri Gaed in
Current site
Google Scholar
PubMed
Close
,
Anthony C. Hackney
Search for other papers by Anthony C. Hackney in
Current site
Google Scholar
PubMed
Close
,
Ayoub Saeidi
Search for other papers by Ayoub Saeidi in
Current site
Google Scholar
PubMed
Close
,
Ismail Laher
Search for other papers by Ismail Laher in
Current site
Google Scholar
PubMed
Close
,
Jennifer A. Kurtz
Search for other papers by Jennifer A. Kurtz in
Current site
Google Scholar
PubMed
Close
,
Trisha A. VanDusseldorp
Search for other papers by Trisha A. VanDusseldorp in
Current site
Google Scholar
PubMed
Close
, and
Hassane Zouhal
Search for other papers by Hassane Zouhal in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To determine the relationship between gastrointestinal hormones (leptin, glucagon-like peptide-1), ghrelin, cholecystokinin, peptide YY, morphological characteristics, and physical performances in elite soccer players. Methods: Q2 Twenty-two elite male soccer players (age = 23.1 [2.7] y, height = 177.0 [0.1] cm, weight = 70.2 [2.9] kg, body mass index = 22.1 [1.8] kg/m2) completed 3-day food records each week during the 5-week training period. Blood samples were drawn after an overnight fast before and after preseason training to assess gastrointestinal hormones (leptin, glucagon-like peptide-1, ghrelin, cholecystokinin, and peptide YY). Continuous analysis of the training load was used during the training period. Preintervention and postintervention tests assessed jumping (countermovement jump), sprinting (10, 20, and 30 m), and endurance fitness (the Yo-Yo Intermittent Recovery Test Level 1 [YYIRT1]) levels. Results: Preseason training decreased body mass index (P = .001; effect size [ES] = 0.183) and body fat percentage (P = .001; ES = 0.516). There were increases in countermovement jump (P = .032; ES = 0.215), 20- (P = .016; ES = 0.195) and 30-m sprints (P = .001; ES = 0.188), and YYIRT1 performance (P = .001; ES = 0.9). Levels of cholecystokinin, peptide YY, and ghrelin did not change during preseason training, although changes in leptin (P = .001; ES = 0.41) and glucagon-like peptide-1 levels (P = .039; ES = 0.606) were recorded. Leptinemia correlated with anthropometric parameters (body mass index, r = .77, P = .001; percentage of body fat,r = .67, P = .006) and the total distance covered during the YYIRT1 (r = −.54; P = .03). Conclusion: Changes in morphological parameters and physical performance in elite-level male soccer players are related to variations in selected gastrointestinal hormones.

Ben Aabderrahman, VanDusseldorp, and Zouhal contributed equally to the manuscript.

Salhi, Ben Aabderrahman, Triki, and Gaed are with the Higher Inst of Sport and Physical Education of Ksar-Said, University of Manouba, Manouba, Tunisia. Clark is with the Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom. Hackney is with the Dept of Exercise & Sport Science and Dept of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. Saeidi is with the Dept of Physical Education, Damghan Branch, Islamic Azad University, Damghan, Iran. Laher is with the Dept of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada. Kurtz is with the Dept of Kinesiology and Health, Georgia State University, Atlanta, GA, USA. VanDusseldorp is with the Dept of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA. Zouhal is with the Movement, Sport, Health and Sciences Laboratory (M2S), UFR-STAPS, University of Rennes 2-ENS Cachan, Rennes, France, and the Inst International des Sciences du Sport (2IS), Irodouer, France.

Zouhal (hassane.zouhal@univ-rennes2.fr) and VanDusseldorp (tvanduss@kennesaw.edu) are corresponding authors.
  • Collapse
  • Expand
  • 1.

    Rampinini E, Sassi A, Morelli A, Mazzoni S, Fanchini M, Coutts AJ. Repeated-sprint ability in professional and amateur soccer players. Appl Physiol Nutr Metab. 2009;34(6):10481054. PubMed ID: 20029513 doi:10.1139/H09-111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Di Salvo V, Baron R, González-Haro C, Gormasz C, Pigozzi F, Bachl N. Sprinting analysis of elite soccer players during European Champions League and UEFA Cup matches. J Sports Sci. 2010;28(14):14891494. PubMed ID: 21049314 doi:10.1080/02640414.2010.521166

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Rodríguez-Fernández A, Sánchez-Sánchez J, Ramirez-Campillo R, Rodríguez-Marroyo JA, Villa Vicente JG, Nakamura FY. Effects of short-term in-season break detraining on repeated-sprint ability and intermittent endurance according to initial performance of soccer player. PLoS One. 2018;13(8):e0201111. PubMed ID: 30110374 doi:10.1371/journal.pone.0201111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Vassilis S, Yiannis M, Athanasios M, Dimitrios M, Ioannis G, Thomas M. Effect of a 4-week detraining period followed by a 4-week strength program on isokinetic strength in elite youth soccer players. J Exerc Rehabil. 2019;15(1):67. PubMed ID: 30899739 doi:10.12965/jer.1836538.269

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Requena B, García I, Suárez-Arrones L, Saez de Villarreal E, Naranjo Orellana J, Santalla A. Off-season effects on functional performance, body composition, and blood parameters in top-level professional soccer players. J Strength Cond Res. 2017;31(4):939946. PubMed ID: 27438062 doi:10.1519/JSC.0000000000001568

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Perroni F, Fittipaldi S, Falcioni L, et al. Effect of pre-season training phase on anthropometric, hormonal and fitness parameters in young soccer players. PLoS One. 2019;14(11):e0225471. PubMed ID: 31765396 doi:10.1371/journal.pone.0225471

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Nikolaidis PT, Karydis NV. Physique and body composition in soccer players across adolescence. Asian J Sports Med. 2011;2(2):75. PubMed ID: 31765396 doi:10.1371/journal.pone.0225471

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Ramos Campo DJ, Martínez Sánchez F, Esteban García P, et al. Body composition features in different playing position of professional team indoor players. Int J Morphol. 2014;32(4):13161324. doi:10.4067/S0717-95022014000400032

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Austin J, Marks D. Hormonal regulators of appetite. Int J Pediatr Endocrinol. 2008;2009:19. PubMed ID: 19946401 doi:10.1155/2009/141753

  • 10.

    Tschöp M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML. Circulating ghrelin levels are decreased in human obesity. Diabetes. 2001;50(4):707709. PubMed ID: 11289032 doi:10.2337/diabetes.50.4.707

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Alhabeeb H, AlFaiz A, Kutbi E, et al. Gut hormones in health and obesity: the upcoming role of short chain fatty acids. Nutrients. 2021;13(2):481. PubMed ID: 33572661 doi:10.3390/nu13020481

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Zouhal H, Sellami M, Saeidi A, et al. Effect of physical exercise and training on gastrointestinal hormones in populations with different weight statuses. Nutr Rev. 2019;77(7):455477. PubMed ID: 31125091 doi:10.1093/nutrit/nuz005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Plinta R, Olszanecka-Glinianowicz M, Drosdzol-Cop A, Chudek J, Skrzypulec-Plinta V. The effect of three-month pre-season preparatory period and short-term exercise on plasma leptin, adiponectin, visfatin, and ghrelin levels in young female handball and basketball players. J Endocrinol Invest. 2012;35(6):595601. PubMed ID: 21986458 doi:10.3275/8014

    • Search Google Scholar
    • Export Citation
  • 14.

    Franks PW, Farooqi IS, Luan Ja, et al. Does physical activity energy expenditure explain the between-individual variation in plasma leptin concentrations after adjusting for differences in body composition? Int J Clin Endocrinol Metab. 2003;88(7):32583263. PubMed ID: 12843173 doi:10.1210/jc.2002-021426

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Haluzik M, Boudova L, Nedvidkova J, et al. Lower serum leptin concentrations in rugby players in comparison with healthy non-sporting subjects–relationships to anthropometric and biochemical parameters. Eur J Appl Physiol Occup Physiol. 1998;79(1):5861. PubMed ID: 10052661 doi:10.1007/s004210050473

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Foster C, Cadwell K, Crenshaw B, et al. Physical activity and exercise training prescriptions for patients. Cardiol Clin. 2001;19(3):447457. PubMed ID: 11570116 doi:10.1016/s0733-8651(05)70228-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Weiner JS, Lourie JA. Practical human biology. Academic press; 1981.

  • 18.

    Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr. 1974;32(1):7797. PubMed ID: 4843734 doi:10.1079/bjn19740060

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Hackney AC, Viru A. Research methodology: endocrinologic measurements in exercise science and sports medicine. J Athl Train. 2008;43(6):631639. PubMed ID: 19030142 doi:10.4085/1062-6050-43.6.631

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    McCance RA. Medical problems in mineral metabolism. Neth J Med. 2001;58(3):95102. PubMed ID: 11246108 doi:10.1016/s0300-2977(01)00095-x

  • 21.

    Hopkins W, Marshall S, Batterham A, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb27

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Park H-K, Ahima RS. Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. Metabol. 2015;64(1):2434. PubMed ID: 25199978 doi:10.1016/j.metabol.2014.08.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Unal M, Unal DO, Baltaci AK, Mogulkoc R, Kayserilioglu A. Investigation of serum leptin levels in professional male football players and healthy sedentary males. Neuro Endocrinol Lett. 2005;26(2):148151. PubMed ID: 15855887

    • Search Google Scholar
    • Export Citation
  • 24.

    Jiménez-Pavón D, Ortega FB, Artero EG, et al. Physical activity, fitness, and serum leptin concentrations in adolescents. J Pediatr. 2012;160(4):598603.e2. PubMed ID: 22082954 doi:10.1016/j.jpeds.2011.09.058

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Miyatake N, Murakami H, Kawakami R, Tabata I, Miyachi M, Group NS. Circulating leptin levels are associated with physical activity or physical fitness in Japanese. Environ Health Prev Med. 2014;19(5):362366. PubMed ID: 25047150 doi:10.1007/s12199-014-0398-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Kraemer R, Acevedo E, Synovitz L, Hebert E, Gimpel T, Castracane V. Leptin and steroid hormone responses to exercise in adolescent female runners over a 7-week season. Eur J Appl Physiol. 2001;86(1):8591. PubMed ID: 11820328 doi:10.1007/s004210100500

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Racil G, Coquart J, Elmontassar W, et al. Greater effects of high-compared with moderate-intensity interval training on cardio-metabolic variables, blood leptin concentration and ratings of perceived exertion in obese adolescent females. Biol Sport. 2016;33(2):145. PubMed ID: 27274107 doi:10.5604/20831862.1198633

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Haluzik M, Haluzikova D, Brandejský P, et al. Effect of aerobic training in top athletes on serum leptin: comparison with healthy non-athletes. Vnitr Lek. 1999;45(1):5154. PubMed ID: 10422527

    • Search Google Scholar
    • Export Citation
  • 29.

    Shah M, Vella A. Effects of GLP-1 on appetite and weight. Rev Endocr Metab Disord. 2014;15(3):181187. PubMed ID: 24811133 doi:10.1007/s11154-014-9289-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Hallworth JR, Copeland JL, Doan J, Hazell TJ. The effect of exercise intensity on total PYY and GLP-1 in healthy females: a pilot study. J Nutr Metab. 2017;2017:4823102. PubMed ID: 28286674 doi:10.1155/2017/4823102

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Hazell TJ, Townsend LK, Hallworth JR, Doan J, Copeland JL. Sex differences in the response of total PYY and GLP-1 to moderate-intensity continuous and sprint interval cycling exercise. Eur J Appl Physiol. 2017;117(3):431440. PubMed ID: 28154977 doi:10.1007/s00421-017-3547-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Weiss EP, Royer NK, Fisher JS, Holloszy JO, Fontana L. Postprandial plasma incretin hormones in exercise-trained versus untrained subjects. Med Sci Sports Exerc. 2014;46(6):1098. PubMed ID: 24576859 doi:10.1249/MSS.0000000000000204

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Afrasyabi S, Marandi SM, Kargarfard M. The effects of high intensity interval training on appetite management in individuals with type 2 diabetes: influenced by participants weight. J Diabetes Metab Disord. 2019;18(1):107117. PubMed ID: 31275881 doi:10.1007/s40200-019-00396-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Lee SS, Yoo JH, So YS. Effect of the low- versus high-intensity exercise training on endoplasmic reticulum stress and GLP-1 in adolescents with type 2 diabetes mellitus. J Phys Ther Sci. 2015;27(10):30633068. PubMed ID: 26644644 doi:10.1589/jpts.27.3063

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Sim AY, Wallman KE, Fairchild TJ, Guelfi KJ. Effects of high-intensity intermittent exercise training on appetite regulation. Med Sci Sports Exerc. 2015;47(11):24412449. PubMed ID: 25899101 doi:10.1249/MSS.0000000000000687

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Chanoine JP, Mackelvie KJ, Barr SI, Wong AC, Meneilly GS, Elahi DH. GLP-1 and appetite responses to a meal in lean and overweight adolescents following exercise. Obesity. 2008;16(1):202204. PubMed ID: 18223636 doi:10.1038/oby.2007.39

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Adam TC, Westerterp-Plantenga MS. Activity-induced GLP-1 release in lean and obese subjects. Physiol Behav. 2004;83(3):459466. PubMed ID: 15581668 doi:10.1016/j.physbeh.2004.08.035

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Arner P, Kriegholm E, Engfeldt P, Bolinder J. Adrenergic regulation of lipolysis in situ at rest and during exercise. J Clin Invest. 1990;85(3):893898. PubMed ID: 2312732 doi:10.1172/JCI114516

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Ramazani Rad M, Hajirasouli M, Eizadi M. The effect of 12 weeks of aerobic training on GLP-1 receptor expression in pancreatic tissue and glycemic control in type 2 diabetic rats. Qom Univ Med Sci J. 2017;11(6):3645.

    • Search Google Scholar
    • Export Citation
  • 40.

    Flanagan DE, Evans ML, Monsod TP, et al. The influence of insulin on circulating ghrelin. Am J Physiol Endocrinol Metab. 2003;284(2):E313E316. PubMed ID: 12531744 doi:10.1152/ajpendo.00569.2001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Gutzwiller J-P, Degen L, Matzinger D, Prestin S, Beglinger C. Interaction between GLP-1 and CCK-33 in inhibiting food intake and appetite in men. Am J Physiol Regul Integr Comp Physiol. 2004;287(3):R562R567. PubMed ID: 15105167 doi:10.1152/ajpregu.00599.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Martins C, Aschehoug I, Ludviksen M, et al. High-intensity interval training, appetite, and reward value of food in the obese. Med Sci Sports Exerc. 2017;49(9):18511858. PubMed ID: 28398946 doi:10.1249/MSS.0000000000001296

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Mäestu J, Jürimäe J, Valter I, Jürimäe T. Increases in ghrelin and decreases in leptin without altering adiponectin during extreme weight loss in male competitive bodybuilders. Metabolism. 2008;57(2):221225. PubMed ID: 18191052 doi:10.1016/j.metabol.2007.09.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Bailey DM, Davies B, Castell LM, Newsholme EA, Calam J. Physical exercise and normobaric hypoxia: independent modulators of peripheral cholecystokinin metabolism in man. J Appl Physiol. 2001;90(1):105113. PubMed ID: 11133899 doi:10.1152/jappl.2001.90.1.105

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Sliwowski Z, Lorens K, Konturek S, Bielanski W, Zoladz J. Leptin, gastrointestinal and stress hormones in response to exercise in fasted or fed subjects and before or after blood donation. J Physiol Pharmacol. 2001;52(1):53–70. PubMed ID: 11321513

    • Search Google Scholar
    • Export Citation
  • 46.

    Martins C, Kulseng B, Rehfeld J, King N, Blundell J. Effect of chronic exercise on appetite control in overweight and obese individuals. Med Sci Sports Exerc. 2013;45(5):805812. PubMed ID: 23247700 doi:10.1249/MSS.0b013e31827d1618

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Ueda S-Y, Miyamoto T, Nakahara H, et al. Effects of exercise training on gut hormone levels after a single bout of exercise in middle-aged Japanese women. Springerplus. 2013;2(1):19. PubMed ID: 23504454 doi:10.1186/2193-1801-2-83

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Howe SM, Hand TM, Larson-Meyer DE, Austin KJ, Alexander BM, Manore MM. No effect of exercise intensity on appetite in highly-trained endurance women. Nutrients. 2016;8(4):223. PubMed ID: 27096869 doi:10.3390/nu8040223

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Brownley KA, Heymen S, Hinderliter AL, MacIntosh B. Effect of glycemic load on peptide-YY levels in a biracial sample of obese and normal weight women. Obesity. 2010;18(7):12971303. PubMed ID: 19875990 doi:10.1038/oby.2009.368

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1340 1340 140
Full Text Views 25 25 1
PDF Downloads 46 46 2