Physiological and Sprint Kinetics Associated With the Yo-Yo Intermittent Recovery Test Level 1 Performances in Soccer Players

Click name to view affiliation

Mark Kramer Physical Activity, Sport, and Recreation (PhASRec) Research Focus Area, North-West University, Potchefstroom, South Africa

Search for other papers by Mark Kramer in
Current site
Google Scholar
PubMed
Close
*
,
Martinique Sparks Physical Activity, Sport, and Recreation (PhASRec) Research Focus Area, North-West University, Potchefstroom, South Africa

Search for other papers by Martinique Sparks in
Current site
Google Scholar
PubMed
Close
, and
Ben Coetzee Physical Activity, Sport, and Recreation (PhASRec) Research Focus Area, North-West University, Potchefstroom, South Africa

Search for other papers by Ben Coetzee in
Current site
Google Scholar
PubMed
Close
Restricted access

Background: The Yo-Yo Intermittent Recovery Test Level 1 (YYIR1) is often utilized to indirectly assess the cardiorespiratory fitness of team-sport athletes due to its proposed association with match-play high-speed running performance and predicted maximal oxygen uptake. No previous research has investigated the relationships between YYIR1 performances, actual oxygen uptake recorded during the YYIR1, and true all-out sprint kinetics (eg, maximal sprint speed, maximal force capacity, and maximal power output), which therefore served as the primary objective of this study. Objectives: To assess the true physiological kinetics (V˙O2 and heart-rate responses) during the YYIR1 and to evaluate the correlations between the physiological kinetics, sprint kinetics, and YYIR1 performance parameters. Methods: A total of 23 amateur male soccer players were recruited for the study (age 22.52 [2.86] y; height 1.75 [0.06] m; body mass 65.61 [8.43] kg). Each participant completed a YYIR1 and 2 all-out sprint tests. Results: Significant differences were observed between actual and predicted maximal oxygen-uptake values (Mdiff = 17.57 mL·kg−1·min−1, P < .001, r = .63). Shuttle distances showed statistically significant correlations with maximal sprint speed (r = .42, P = .044) and theoretic maximal speed (r = .44, P = .035). However, no other correlations with sprint kinetic parameters (eg, maximal force or power output) were observed. Conclusion: Practitioners should carefully consider the outcomes and utilities of the parameters derived from the YYIR1. The estimations of maximal oxygen uptake from shuttle performances as a proxy for cardiorespiratory fitness are not adequate. However, shuttle distances appear to be positively associated with all-out sprinting capacities.

Kramer (mark.kramer@nwu.ac.za) is corresponding author.

  • Collapse
  • Expand
  • 1.

    Slimani M, Znazen H, Miarka B, Bragazzi NL. Maximum oxygen uptake of male soccer players according to their competitive level, playing position and age group: implication from a network meta-analysis. J Hum Kinet. 2019;66:233245. PubMed ID: 30988857 doi:10.2478/hukin-2018-0060

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Nader GA. Concurrent strength and endurance training: from molecules to man. Med Sci Sports Exerc. 2006;38(11):19651970. PubMed ID: 17095931 doi:10.1249/01.mss.0000233795.39282.33

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Lundby C, Montero D, Joyner M. Biology of VO2max: looking under the physiology lamp. Acta Physiol. 2017;220(2):218228. doi:10.1111/apha.12827

  • 4.

    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part II: anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013;43(10):927954. PubMed ID: 23832851 doi:10.1007/s40279-013-0066-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Jiménez-Reyes P, Samozino P, García-Ramos A, Cuadrado-Peña V, Brughelli M, Morin J. Relationship between vertical and horizontal force-velocity-power profiles in various sports and levels of practice. Peer J. 2018;6:e5937. PubMed ID: 30479900 doi:10.7717/peerj.5937

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Bandyopadhyay A. Validity of 20 meter multi-stage shuttle run test for estimation of maximum oxygen uptake in female university students. Indian J Physiol Pharmacol. 2013;57(1):7783. PubMed ID: 24020102 doi:10.5604/20831862.1127283

    • Search Google Scholar
    • Export Citation
  • 7.

    Cooper SM, Baker JS, Tong RJ, Roberts E, Hanford M. The repeatability and criterion related validity of the 20 m multistage fitness test as a predictor of maximal oxygen uptake in active young men. Br J Sports Med. 2005;39(4):17. doi:10.1136/bjsm.2004.013078

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Poole DC, Jones AM. Oxygen uptake kinetics. Compr Physiol. 2012;2(2):933996. PubMed ID: 23798293 doi:10.1002/cphy.c100072

  • 9.

    Berthoin S, Pelayo P, Lensel-Corbeil G, Robin H, Gerbeaux M. Comparison of maximal aerobic speed as assessed with laboratory and field measurements in moderately trained subjects. Int J Sports Med. 1996;17(7):525529. PubMed ID: 8912068 doi:10.1055/s-2007-972889

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Léger L, Gadoury C. Validity of the 20 m shuttle run test with 1 min stages to predict VO2max in adults. Can J Sport Sci. 1989;14(1):2126. PubMed ID: 2924218

    • Search Google Scholar
    • Export Citation
  • 11.

    Schmitz B, Pfeifer C, Kreitz K, Borowski M, Faldum A, Brand SM. The Yo-Yo intermittent tests: a systematic review and structured compendium of test results. Front Physiol. 2018;9:116. doi:10.3389/fphys.2018.00870

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Krustrup P, Mohr M, Amstrup T, et al. The Yo-Yo intermittent recovery test: physiological response, reliability, and validity. Med Sci Sports Exerc. 2003;35(4):697705. PubMed ID: 12673156 doi:10.1249/01.MSS.0000058441.94520.32

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Metaxas TI, Koutlianos NA, Kouidi EJ, Deligiannis AP. Comparative study of field and laboratory tests for the evaluation of aerobic capacity in soccer players. J Strength Cond Res. 2005;19(1):7984. PubMed ID: 15707383

    • Search Google Scholar
    • Export Citation
  • 14.

    Martínez-Lagunas V, Hartmann U. Validity of the Yo-Yo Intermittent Recovery Test Level 1 for direct measurement or indirect estimation of maximal oxygen uptake in female soccer players. Int J Sports Physiol Perform. 2014;9(5):825831. PubMed ID: 24436355 doi:10.1123/ijspp.2013-0313

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Schmitz B, Pfeifer C, Thorwesten L, Krüger M, Klose A, Brand SM. Yo-Yo intermittent recovery level 1 test for estimation of peak oxygen uptake: use without restriction? Res Q Exerc Sport. 2020;91(3):478487. PubMed ID: 32004114 doi:10.1080/02701367.2019.1684432

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Bangsbo J, Iaia FM, Krustrup P. The Yo-Yo intermittent recovery test: a useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008;38(1):3751. PubMed ID: 18081366 doi:10.2165/00007256-200838010-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Michailidis Y, Chavlis S, Mitrotasios M, et al. The use of yo-yo intermittent recovery test level 1 for the estimation of maximal oxygen uptake in youth elite soccer players. Trends Sport Sci. 2020;27(3):167. doi:10.23829/TSS.2020.27.3-7

    • Search Google Scholar
    • Export Citation
  • 18.

    Sandford GN, Kilding AE, Ross A, Laursen PB. Maximal sprint speed and the anaerobic speed reserve domain: the untapped tools that differentiate the world’s best male 800 m runners. Sports Med. 2019;49(6):843852. PubMed ID: 30374943 doi:10.1007/s40279-018-1010-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Dardouri W, Selmi MA, Sassi RH, et al. Relationship between repeated sprint performance and both aerobic and anaerobic fitness. J Hum Kinet. 2014;40(1):139148. doi:10.2478/hukin-2014-0016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Morin J, Samozino P. Interpreting power-force-velocity profiles for individualized and specific training. Int J Sports Physiol Perform. 2015;11:267272. PubMed ID: 26694658 doi:10.1123/ijspp.2015-0638

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Cross MR, Brughelli M, Samozino P, Morin J. Methods of power-force-velocity profiling during sprint running: a narrative review. Sports Med. 2017;47(7):12551269. PubMed ID: 27896682 doi:10.1007/s40279-016-0653-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Beltz NM, Gibson AL, Janot JM, Kravitz L, Mermier CM, Dalleck LC. Graded exercise testing protocols for the determination of VO2max: historical perspectives, progress, and future considerations. J Sports Med. 2016;2016:112. doi:10.1155/2016/3968393

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Hermassi S, Ingebrigtsen J, Schwesig R, et al. Effects of in-season short-term aerobic and high-intensity interval training program on repeated sprint ability and jump performance in handball players. J Sports Med Phys Fitness. 2018;58(1–2):5056. PubMed ID: 27849114 doi:10.23736/S0022-4707.16.06770-0

    • Search Google Scholar
    • Export Citation
  • 24.

    Clarke R, Dobson A, Hughes J, Kingdom U, Sciences S, Kingdom U. Metabolic conditioning: field tests to determine a training velocity. Strength Cond J. 2016;38(1):3847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Rossiter HB. Exercise: kinetic considerations for gas exchange. Compr Physiol. 2011;1(1):203244. PubMed ID: 23737170 doi:10.1002/cphy.c090010

    • Search Google Scholar
    • Export Citation
  • 26.

    Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37(1):153156. PubMed ID: 11153730 doi:10.1016/S0735-1097(00)01054-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Vescovi JD, Jovanovi´ M. Sprint mechanical characteristics of female soccer players: a retrospective pilot study to examine a novel approach for correction of timing gate starts. Front Sport Act Living. 2021;3:17. doi:10.3389/fspor.2021.629694

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Samozino P, Rabita G, Dorel S, et al. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand J Med Sci Sport. 2016;26(6):648658. doi:10.1111/sms.12490

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Schober P, Schwarte LA. Correlation coefficients: appropriate use and interpretation. Anesth Analg. 2018;126(5):17631768. PubMed ID: 29481436 doi:10.1213/ANE.0000000000002864

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Jamnick NA, Pettitt RW, Granata C, Pyne DB, Bishop DJ. An examination and critique of current methods to determine exercise intensity. Sports Med. 2020;50(10):17291756. PubMed ID: 32729096 doi:10.1007/s40279-020-01322-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Hatamoto Y, Yamada Y, Sagayama H, Higaki Y, Kiyonaga A, Tanaka H. The relationship between running velocity and the energy cost of turning during running. PLoS One. 2014;9(1):18. doi:10.1371/journal.pone.0081850

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Dupont G, McCall A, Prieur F, Millet GP, Berthoin S. Faster oxygen uptake kinetics during recovery is related to better repeated sprinting ability. Eur J Appl Physiol. 2010;110(3):627634. PubMed ID: 20574678 doi:10.1007/s00421-010-1494-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Tang R, Murtagh C, Warrington G, et al. Directional change mediates the physiological response to high-intensity shuttle running in professional soccer players. Sports. 2018;6(2):39. doi:10.3390/sports6020039

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Al Haddad H, Simpson BM, Buchheit M, Di Salvo V, Mendez-Villanueva A. Peak match speed and maximal sprinting speed in young soccer players: effect peak match speed and maximal sprinting speed in young soccer players: effect of age and playing position. Int J Sports Physiol Perform. 2015;10:888896. PubMed ID: 25710125 doi:10.1123/ijspp.2014-0539

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Sánchez-García M, Sánchez-Sánchez J, Rodríguez-Fernández A, Solano D, Castillo D. Relationships between sprint ability and endurance capacity in soccer referees. Sports. 2018;6(2):28. doi:10.3390/sports6020028

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2198 583 43
Full Text Views 141 102 4
PDF Downloads 76 18 2