Effects of Far-Infrared Radiation-Lamp Therapy on Recovery From Simulated Soccer Match Running Activities in Elite Soccer Players

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Chung-Chan HsiehDepartment of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei City, Taiwan

Search for other papers by Chung-Chan Hsieh in
Current site
Google Scholar
PubMed
Close
,
Kazunori NosakaCentre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia

Search for other papers by Kazunori Nosaka in
Current site
Google Scholar
PubMed
Close
,
Tai-Ying ChouDepartment of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei City, Taiwan
Department of Athletic Performance, National Taiwan Normal University, Taipei City, Taiwan

Search for other papers by Tai-Ying Chou in
Current site
Google Scholar
PubMed
Close
,
Sheng-Tsung HsuDepartment of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei City, Taiwan

Search for other papers by Sheng-Tsung Hsu in
Current site
Google Scholar
PubMed
Close
, and
Trevor C. ChenDepartment of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei City, Taiwan

Search for other papers by Trevor C. Chen in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Purpose: The authors investigated whether far-infrared radiation (FIR) lamp therapy would reduce muscle damage and enhance recovery from multiple soccer-match-related running activities. Methods: Twenty-four elite female soccer players (20–24 y) were assigned into a FIR or a sham treatment group (n = 12/group). They performed a daily 90-minute Loughborough Intermittent Shuttle Test (LIST) for 6 consecutive days. Maximal voluntary contraction torque of the knee extensors (KEs) and flexors, muscle soreness, plasma creatine kinase activity, countermovement jump, and several other performance measures (eg, 30-m dash, Yo-Yo Intermittent Recovery Test Level 1) were taken before the first LIST, 1 hour after each LIST, and 24, 48, 72, 96, and 120 hours after the last LIST. All participants received a 30-minute FIR or sham treatment on KEs and knee flexors, respectively, at 2 hour after each LIST and 25, 49, 73, and 97 hours after the last LIST. Results: All measures changed significantly (P < .05) at 1 hour after the first LIST without difference (P > .05) between groups. Maximal voluntary contraction torque (eg, the largest decrease of KE for FIR: 13% [4%], sham: 25% [5%]), countermovement jump height (4% [3%] vs 14% [4%]), and other performance measures (eg, Yo-Yo Intermittent Recovery Test: 11% [5%] vs 26% [5%]) decreased less, and peak muscle soreness (eg, KE: 26 [9] vs 51 [18] mm) and plasma creatine kinase activity (172 [32] vs 1289 [610] IU/L) were smaller for the FIR than for the sham group (P < .05), and they returned to the baseline earlier (P < .05) for the FIR group. Conclusions: These results suggest that the FIR therapy provided potent effects on reducing accumulated muscle damage and enhancing recovery.

  • Collapse
  • Expand
  • 1.

    Thomas K, Dent J, Howatson G, Goodall S. Etiology and recovery of neuromuscular fatigue after simulated soccer match play. Med Sci Sports Exerc. 2017;49(5):955964. PubMed ID: 28060035 doi:10.1249/MSS.0000000000001196

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Chou T-Y, Nosaka K, Chen TC. Muscle damage and performance after single and multiple simulated matches in university elite female soccer players. Int J Environ Res Public Health. 2021;18(8):4134. PubMed ID: 33919800 doi:10.3390/ijerph18084134

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Nedelec M, McCall A, Carling C, Legall F, Berthoin S, Dupont G. Recovery in soccer: part I—post-match fatigue and time course of recovery. Sports Med. 2012;42(12):9971015. PubMed ID: 23046224

    • Search Google Scholar
    • Export Citation
  • 4.

    Hughes JD, Denton K, Lloyd RS, Oliver JL, Croix MDS. The impact of soccer match play on the muscle damage response in youth female athletes. Int J Sports Med. 2018;39(5):343348. PubMed ID: 29475207 doi:10.1055/s-0044-101147

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Andersson H, Raastad T, Nilsson J, Paulsen G, Garthe I, Kadi F. Neuromuscular fatigue and recovery in elite female soccer: effects of active recovery. Med Sci Sports Exerc. 2008;40(2):372380. PubMed ID: 18202563 doi:10.1249/mss.0b013e31815b8497

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Tessitore A, Meeusen R, Pagano R, Benvenuti C, Tiberi M, Capranica L. Effectiveness of active versus passive recovery strategies after futsal games. J Strength Cond Res. 2008;22(5):14021412. PubMed ID: 18714251 doi:10.1519/JSC.0b013e31817396ac

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Ascensao A, Leite M, Rebelo AN, Magalhes S, Magalhes J. Effects of cold water immersion on the recovery of physical performance and muscle damage following a one-off soccer match. J Sports Sci. 2011;29(3):217225. PubMed ID: 21170794

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Clifford T, Abbott W, Kwiecien SY, Howatson G, McHugh MP. Cryotherapy re-invented: application of phase change material for recovery in elite soccer. Int J Sports Physiol Perform. 2018;13(5):584589. PubMed ID: 28872368 doi:10.1123/ijspp.2017-0334

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Marqués-Jiménez D, Calleja-Gonzalez J, Arratibel I, Delextrat A, Uriarte F, Terrados N. Influence of different types of compression garments on exercise-induced muscle damage markers after a soccer match. Res Sports Med. 2018;26(1):2742. PubMed ID: 29082755 doi:10.1080/15438627.2017.1393755

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Rey E, Padron-Cabo A, Costa PB, Barcala-Furelos R. Effects of foam rolling as a recovery tool in professional soccer players. J Strength Cond Res. 2019;33(8):21942201. PubMed ID: 29016479 doi:10.1519/JSC.0000000000002277

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Coelho TM, Nunes RFH, Nakamura FY, et al. Post-match recovery in soccer with far-infrared emitting ceramic material or cold-water immersion. J Sports Sci Med. 2021;20:732742. PubMed ID: 35321145 doi:10.52082/jssm.2021.732

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Nunes RFH, Cidral-Filho FJ, Flores LJF, et al. Effects of far-infrared emitting ceramic materials on recovery during 2-week preseason of elite futsal players. J Strength Cond Res. 2020;34(1):235248. PubMed ID: 30113919 doi:10.1519/JSC.0000000000002733

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Loturco I, Abad CCC, Nakamura FY, et al. Effects of far infrared rays emitting clothing on recovery after an intense plyometric exercise bout applied to elite soccer players: a randomized double-blind placebo-controlled trial. Biol Sport. 2016;33(3):277283. PubMed ID: 27601783 doi:10.5604/20831862.1208479

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Hausswirth C, Louis J, Bieuzen F, et al. Effects of whole-body cryotherapy vs. far-infrared vs. passive modalities on recovery from exercise induced muscle damage in highly-trained runners. PLoS One. 2011;6(12):e27749. PubMed ID: 22163272 doi:10.1371/journal.pone.0027749

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Leung T-K. In vitro and in vivo studies of the biological effects of bioceramic (a material of emitting high performance far-infrared ray) irradiation. Chin J Physiol. 2015;58(3):147155. PubMed ID: 26014120 doi:10.4077/CJP.2015.BAD294

    • Search Google Scholar
    • Export Citation
  • 16.

    Inoue S, Kabaya M. Biological activities caused by far-infrared radiation. Int J Biometeorol. 1989;33(3):145150. PubMed ID: 2689357 doi:10.1007/BF01084598

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Yu SY, Chiu JH, Yang SD, Hsu YC, Lui WY, Wu CW. Biological effect of far-infrared therapy on increasing skin microcirculation in rats. Photodermatol Photoimmunol Photomed. 2006;22(2):7886. PubMed ID: 16606412 doi:10.1111/j.1600-0781.2006.00208.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates; 1988.

  • 19.

    Nicholas CW, Nuttall FE, Williams C. The Loughborough intermittent shuttle test: a field test that simulates the activity pattern of soccer. J Sports Sci. 2000;18(2):97104. PubMed ID: 10718565 doi:10.1080/026404100365162

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Chou Y-C, Chen H-L, Chen TC, Lin M-J. Eccentric exercise-induced different magnitude of variability in blood creatine kinase and indirect markers of muscle damage. Phys Educ J. 2018;51(1):1324.

    • Search Google Scholar
    • Export Citation
  • 21.

    Ho S-Y, Chen H-T, Chung Y-C, Wang Z-Y, Liu Y-C, Wu H-J. Effect of short-term high-intensity circuit training on body composition, metabolic syndrome, lower limb muscular strength and blood parameters in middle-aged women. Phys Educ J. 2018;51(2):155168.

    • Search Google Scholar
    • Export Citation
  • 22.

    Lin Y-C, Chiang T-L, Chen C, Chan S-H, Wu H-J. Benefits of local and whole-body isometric resistance training on cardiovascular system: stress responses and long-term adaptation of exercise. Phys Educ J. 2022;55(1):3752.

    • Search Google Scholar
    • Export Citation
  • 23.

    Bakeman R. Recommended effect size statistics for repeated measures designs. Behav Res Methods. 2005;37(3):379384. PubMed ID: 16405133 doi:10.3758/BF03192707

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Ikeda Y, Biro S, Kamogawa Y, et al. Repeated sauna therapy increases arterial endothelial nitric oxide synthase expression and nitric oxide production in cardiomyopathic hamsters. Circ J. 2005;69(6):722729. PubMed ID: 15914953 doi:10.1253/circj.69.722

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Lin C-C, Liu X-M, Peyton K, et al. Far infrared therapy inhibits vascular endothelial inflammation via the induction of heme oxygenase-1. Arterioscler Thromb Vasc Biol. 2008;28(4):739745. PubMed ID: 18202320 doi:10.1161/ATVBAHA.107.160085

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Toyokawa H, Matsui Y, Uhara J, et al. Promotive effects of far-infrared ray on full-thickness skin wound healing in rats. Exp Biol Med. 2003;228(6):724729. doi:10.1177/153537020322800612

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Habib ME, Punnoose T, Thomas C. Deep burns caused by far-infrared rays in a chiropractic sales centre. Ann Burns Fire Disasters. 2007;20(2):104106. PubMed ID: 21991078

    • Search Google Scholar
    • Export Citation
  • 28.

    Vatansever F, Hamblin MR. Far Infrared Radiation (FIR): its biological effects and medical applications. Photonics Lasers Med. 2012;4:255266. PubMed ID: 23833705

    • Search Google Scholar
    • Export Citation
  • 29.

    Ervolino F, Gazze R. Far infrared wavelength treatment for low back pain: evaluation of a non-invasive device. Work. 2015;53(1):157162. PubMed ID: 26409395 doi:10.3233/WOR-152152

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Shui S, Wang X, Chiang JY, Zheng L. Far-infrared therapy for cardiovascular, autoimmune, and other chronic health problems: a systematic review. Exp Biol Med. 2015;240(10):12571265. PubMed ID: 25716016 doi:10.1177/1535370215573391

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1341 1342 139
Full Text Views 32 32 2
PDF Downloads 53 53 2