Influence of Torque and Cadence on Power Output Production in Cyclists

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Peter LeoDepartment of Sports Science, Division of Performance Physiology & Prevention, University of Innsbruck, Innsbruck, Austria

Search for other papers by Peter Leo in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4501-7688
,
Manuel Mateo-MarchFaculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
Department of Sport Sciences, Sports Research Center, Universidad Miguel Hernández de Elche, Alicante, Spain

Search for other papers by Manuel Mateo-March in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4418-8263*
,
Pedro L. ValenzuelaGrupo de Investigación en Actividad física y Salud (PaHerg), Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
Department of Systems Biology, University of Alcalá, Madrid, Spain

Search for other papers by Pedro L. Valenzuela in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1730-3369
,
Xabier MurielHuman Performance and Sports Science Laboratory, Faculty of Sport Sciences, University of Murcia, Murcia, Spain

Search for other papers by Xabier Muriel in
Current site
Google Scholar
PubMed
Close
,
Alexis Gandía-SorianoBiophysics and Medical Physics Group (GIFIME), Department of Physiology, University of Valencia, Valencia, Spain

Search for other papers by Alexis Gandía-Soriano in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9940-2023
,
Andrea GiorgiMedical and Performance Staff, Drone Hopper-Androni Giocattoli Professional Cycling Team, Turín, Italy
Complex Operational Unit for Functional Recovery and Reeducation, Azienda USL Toscana Sud-Est, Arezzo, Italy

Search for other papers by Andrea Giorgi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9271-8778
,
Mikel ZabalaFaculty of Sport Sciences, Department of Physical Education and Sport, University of Granada, Granada, Spain

Search for other papers by Mikel Zabala in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8700-0382
,
David Barranco-GilFaculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain

Search for other papers by David Barranco-Gil in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4869-5900
,
Iñigo MujikaFaculty of Medicine and Nursing, Department of Physiology, University of the Basque Country, Leioa, Spain
Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile

Search for other papers by Iñigo Mujika in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8143-9132
,
Jesús G. PallarésDepartment of Systems Biology, University of Alcalá, Madrid, Spain

Search for other papers by Jesús G. Pallarés in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6087-1583
, and
Alejandro LuciaFaculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
Grupo de Investigación en Actividad física y Salud (PaHerg), Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain

Search for other papers by Alejandro Lucia in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: No information is available on the torque/cadence relationship in road cyclists. We aimed to establish whether this relationship differs between cyclists of different performance levels or team roles. Methods: Mean maximal power (MMP) output data from 177 riders were obtained from 2012 to 2021 from training and competitions. Cyclists were categorized according to their performance level (world-tour [WT, n = 68], procontinental [PC, n = 63], or under 23 [U23, n = 46]) and team role (time trialists [n = 12], all-rounders [n = 94], climbers [n = 64], or team leaders [n = 7]). Results: A significant interaction effect was found for absolute and relative MMP (P < .001), with higher values in PC than WT for short (5–60 s) efforts and the opposite trend for longer durations. MMP was also greater in PC than in U23 for short efforts (30–60 s), with WT and PC attaining higher MMP than U23 for longer bouts (5–60 min). A significant interaction effect was found for cadence (P = .007, but with no post hoc differences) and absolute (P = .010) and relative torque (P = .002), with PC and WT showing significantly higher torque (all P < .05) than U23 for 5- to 60-minute efforts, yet with no differences between the former 2 performance levels. No interaction effect between team roles was found for cadence (P = .185) or relative torque (P = .559), but a significant interaction effect was found for absolute torque (P < .001), with all-rounders attaining significantly higher values than climbers for 5-second to 5-minute efforts. Conclusions: Differences in MMP between cycling performance levels and rider types are dependent on torque rather than cadence, which might support the role of torque development in performance.

  • Collapse
  • Expand
  • 1.

    Muriel X, Valenzuela PL, Mateo-March M, Pallarés JG, Lucia A, Barranco-Gil D. Physical demands and performance indicators in male professional cyclists during a grand tour: worldtour versus proteam category. Int J Sport Physiol Perform. 2021;17(1):2230. doi:10.1123/ijspp.2021-0082

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Leo P, Spragg J, Simon D, Mujika I, Lawley SJ. Power profiling, workload characteristics and race performance of U23 and professional cyclists during the multistage race tour of the Alps. Int J Sport Physiol Perform. 2021;16(8):17. doi:10.1123/ijspp.2020-0381

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Sanders D, Heijboer M. Physical demands and power profile of different stage types within a cycling grand tour. Eur J Sport Sci. 2019;19(6):736744. PubMed ID: 30589390 doi:10.1080/17461391.2018.1554706

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Valenzuela P, Muriel X, van Erp T, et al. The record power profile of male professional cyclists: normative values obtained from a large database. Int J Sport Physiol Perform. 2022;17(5):701710. doi:10.1123/ijspp.2021-0263

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    van Erp T, Sanders D, Lamberts RP. Maintaining power output with accumulating levels of work done is a key determinant for success in professional cycling. Med Sci Sport Exerc. 2021;53(9):19031910. doi:10.1249/MSS.0000000000002656

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Bertucci W, Grappe F, Girard A, Betik A, Rouillon JD. Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling. J Biomech. 2005;38(5):10031010. doi:10.1016/j.jbiomech.2004.05.037

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Vandewalle H, Peres G, Heller J, Monod H. All out anaerobic capacity tests on cycle ergometers. Eur J Appl Physiol. 1985;54(2):222229. doi:10.1007/BF02335934

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Sargeant AJ, Hoinville E, Young A. Maximum leg force and power output during short-term dynamic exercise. J Appl Physiol. 1981;51(5):11751182. PubMed ID: 7298457 doi:10.1152/jappl.1981.51.5.1175

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Martin J, Wagner B, Coyle E. Inertial-load method determines maximal cycling power in a single exercise bout. Med Sci Sport Exerc. 1997;29(11):15051512. doi:10.1097/00005768-199711000-00018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Gardner AS, Martin JC, Martin DT, Barras M, Jenkins DG. Maximal torque-and power-pedaling rate relationships for elite sprint cyclists in laboratory and field tests. Eur J Appl Physiol. 2007;101(3):287292. PubMed ID: 17562069 doi:10.1007/s00421-007-0498-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Taylor K, Deckert S, Sanders D. Field-testing to determine power-cadence and torque-cadence profiles in professional road cyclists: sprint profiling of professional cyclists. Eur J Sport Sci. 2022;1:19. doi:10.1080/17461391.2022.2095307

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Muriel X, Mateo-March M, Valenzuela PL, et al. Durability and repeatability of professional cyclists during a grand tour. Eur J Sport Sci. 2021;1:18. doi:10.1080/17461391.2021.1987528

    • Search Google Scholar
    • Export Citation
  • 13.

    Mateo-March M, Valenzuela P, Muriel X, et al. The record power profile of male professional cyclists: fatigue matters. Int J Sport Physiol Perform. 2022;1:16. doi:10.1123/ijspp.2021-0403

    • Search Google Scholar
    • Export Citation
  • 14.

    Spragg J, Leo P, Swart J. The relationship between training characteristics and durability in professional cyclists across a competitive season. Eur J Sport Sci. 2022;1:110. doi:10.1080/17461391.2022.2049886

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Maunder E, Seiler S, Mildenhall MJ, Kilding AE, Plews DJ. The importance of “durability” in the physiological profiling of endurance athletes. Sports Med. 2021;51(8):16191628. doi:10.1007/s40279-021-01459-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Wackwitz TA, Minahan CL, King T, Du Plessis C, Andrews MH, Bellinger PM. Quantification of maximal power output in well-trained cyclists. J Sports Sci. 2020;39(1):8190. doi:10.1080/02640414.2020.1805251

    • Search Google Scholar
    • Export Citation
  • 17.

    Vogt S, Roecker K, Schumacher YO, et al. Cadence-power-relationship during decisive mountain ascents at the Tour de France. Int J Sport Med. 2008;29(3):244250. doi:10.1055/s-2007-965353

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Bouillod A, Soto-Romero G, Grappe F, Bertucci W, Brunet E, Cassirame J. Caveats and recommendations to assess the validity and reliability of cycling power meters: a systematic scoping review. Sensors. 2022;22(1):386. doi:10.3390/s22010386

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Maier T, Schmid L, Müller B, Steiner T, Wehrlin JP. Accuracy of cycling power meters against a mathematical model of treadmill cycling. Int J Sport Med. 2017;38(6):454461. doi:10.1055/s-0043-102945

    • Search Google Scholar
    • Export Citation
  • 20.

    Gallo G, Leo P, Mateo-March M, et al. Cross-sectional differences in race demands between junior, under 23, and professional road cyclists. Int J Sport Perform Anal. 2022;17(3):450457. doi:10.1123/ijspp.2021-0256

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Sanders D, van Erp T. The physical demands and power profile of professional men’s cycling races: an updated review. Int J Sport Physiol Perform. 2021;16(1):312. doi:10.1123/ijspp.2020-0508

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Pinot J, Grappe F. The record power profile to assess performance in elite cyclists. Int J Sport Med. 2011;32(11):839844. doi:10.1055/s-0031-1279773

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Pinot J, Grappe F. A six-year monitoring case study of a top-10 cycling grand tour finisher. J Sport Sci. 2015;33(9):907914. doi:10.1080/02640414.2014.969296

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Vogt S, Schumacher YO, Blum A, et al. Cycling power output produced during flat and mountain stages in the Giro d’Italia: a case study. J Sport Sci. 2007;25(12):12991305. doi:10.1080/02640410601001632

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Vogt S, Schumacher YO, Roecker K, et al. Power output during the Tour de France. Int J Sport Med. 2007;28(9):756761. doi:10.1055/s-2007-964982

  • 26.

    Dorel S, Hautier C, Rambaud O, et al. Torque and power-velocity relationships in cycling: relevance to track sprint performance in world-class cyclists. Int J Sport Med. 2005;26(9):739746. doi:10.1055/s-2004-830493

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Hendrix C, Housh T, Mielke M, et al. Critical torque, estimated time to exhaustion, and anaerobic work capacity from linear and nonlinear mathematical models. Med Sci Sport Exerc. 2009;41(12):21852190. doi:10.1249/MSS.0b013e3181ab8cc0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Pethick J, Winter SL, Burnley M. Physiological evidence that the critical torque is a phase transition, not a threshold. Med Sci Sport Exerc. 2020;52(11):23902401. doi:10.1249/MSS.0000000000002389

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Brownstein C, Metra M, Pastor F, Faricier R, Millet G. Disparate mechanisms of fatigability in response to prolonged running versus cycling of matched intensity and duration. Med Sci Sport Exerc. 2022;54(5):872882. doi:10.1249/MSS.0000000000002863

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Jones AM, Wilkerson DP, DiMenna F, Fulford J, Poole DC. Muscle metabolic responses to exercise above and below the “critical power” assessed using 31P-MRS. Am J Physiol. 2008;294(2):585593. doi:10.1152/ajpregu.00731.2007

    • Search Google Scholar
    • Export Citation
  • 31.

    Poole DC, Ward SA, Gardner GW, Whipp BJ. Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergon. 1988;31(9):12651279. doi:10.1080/00140138808966766

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Kordi M, Folland J, Goodall S, et al. Cycling‐specific isometric resistance training improves peak power output in elite sprint cyclists. Scand J Med Sci Sport. 2020;30(9):15941604. doi:10.1111/sms.13742

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Rønnestad B, Hansen J, Hollan I, Ellefsen S. Strength training improves performance and pedaling characteristics in elite cyclists. Scand J Med Sci Sport. 2015;25(1):e89e98. doi:10.1111/sms.12257

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Kordi M, Evans M, Howatson G. Quasi-isometric cycling: a case study investigation of a novel method to augment peak power output in sprint cycling. Int J Sport Perform Anal. 2020;16(3):452455. doi:10.1123/ijspp.2020-0100

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Hansen E, Jørgensen L, Jensen K, Fregly B., Sjøgaard G. Crank inertial load affects freely chosen pedal rate during cycling. J Biomech. 2002;35(2):277285. PubMed ID: 11784546 doi:10.1016/S0021-9290(01)00182-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Barratt P, Martin J, Elmer S, Korff T. Effects of pedal speed and crank length on pedaling mechanics during submaximal cycling. Med Sci Sport Exerc. 2016;48(4):705. doi:10.1249/MSS.0000000000000817

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3146 3146 1298
Full Text Views 116 116 39
PDF Downloads 181 181 62