Recreational Runners Gain Physiological and Biomechanical Benefits From Super Shoes at Marathon Paces

Click name to view affiliation

Giorgos P. Paradisis Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece

Search for other papers by Giorgos P. Paradisis in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5633-2878 *
,
Elias Zacharogiannis Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece

Search for other papers by Elias Zacharogiannis in
Current site
Google Scholar
PubMed
Close
,
Athanassios Bissas School of Natural, Social and Sport Sciences, University of Gloucestershire, Gloucester, United Kingdom

Search for other papers by Athanassios Bissas in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7858-9623
, and
Brian Hanley Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom

Search for other papers by Brian Hanley in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7940-1904
Restricted access

Purpose: Advanced footwear technology is prevalent in distance running, with research focusing on these “super shoes” in competitive athletes, with less understanding of their value for slower runners. The aim of this study was to compare physiological and biomechanical variables between a model of super shoes (Saucony Endorphin Speed 2) and regular running shoes (Saucony Cohesion 13) in recreational athletes. Methods: We measured peak oxygen uptake (VO2peak) in 10 runners before testing each subject 4 times in a randomly ordered crossover design (ie, Endorphin shoe or Cohesion shoe, running at 65% or 80% of velocity at VO2peak [vVO2peak]). We recorded video data using a high-speed camera (300 Hz) to calculate vertical and leg stiffnesses. Results: 65% vVO2peak was equivalent to a speed of 9.4 km·h−1 (0.4), whereas 80% vVO2peak was equivalent to 11.5 km·h−1 (0.5). Two-way mixed-design analysis of variance showed that oxygen consumption in the Endorphin shoe was 3.9% lower than in the Cohesion shoe at 65% vVO2peak, with an interaction between shoes and speed (P = .020) meaning an increased difference of 5.0% at 80% vVO2peak. There were small increases in vertical and leg stiffnesses in the Endorphin shoes (P < .001); the Endorphin shoe condition also showed trivial to moderate differences in step length, step rate, contact time, and flight time (P < .001). Conclusions: There was a physiological benefit to running in the super shoes even at the slower speed. There were also spatiotemporal and global stiffness improvements indicating that recreational runners benefit from wearing super shoes.

  • Collapse
  • Expand
  • 1.

    Casado A, Hanley B, Santos-Concejero J, Ruiz-Pérez LM. World-class long-distance running performances are best predicted by volume of easy runs and deliberate practice of short-interval and tempo runs. J Strength Cond Res. 2021;35(9):25252531. PubMed ID: 31045681 doi:10.1519/JSC.0000000000003176

    • Search Google Scholar
    • Export Citation
  • 2.

    Stellingwerff T. Contemporary nutrition approaches to optimize elite marathon performance. Int J Sports Physiol Perf. 2013;8(5):573578. doi:10.1123/ijspp.8.5.573

    • Search Google Scholar
    • Export Citation
  • 3.

    Filipas L, La Torre A, Hanley B. Pacing profiles of Olympic and IAAF world championship long-distance runners. J Strength Cond Res. 2021;35(4):11341140. PubMed ID: 30289868 doi:10.1519/JSC.0000000000002873

    • Search Google Scholar
    • Export Citation
  • 4.

    Lieberman DE, Venkadesan M, Werbel WA, et al. Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature. 2010;463(7280):531535. PubMed ID: 20111000 doi:10.1038/nature08723

    • Search Google Scholar
    • Export Citation
  • 5.

    Clinghan R, Arnold GP, Drew TS, Cochrane LA, Abboud RJ. Do you get value for money when you buy an expensive pair of running shoes? Brit J Sports Med. 2008;42(3):189193. doi:10.1136/bjsm.2007.038844

    • Search Google Scholar
    • Export Citation
  • 6.

    Bermon S, Garrandes F, Szabo A, Berkovics I, Adami PE. Effect of advanced shoe technology on the evolution of road race times in male and female elite runners. Front Sports Act Living. 2021;3:653173. PubMed ID: 33969296 doi:10.3389/fspor.2021.653173

    • Search Google Scholar
    • Export Citation
  • 7.

    World Athletics. C2.1A–Athletics Shoe Regulations. 2021. Accessed February 27, 2023. https://www.worldathletics.org/about-iaaf/documents/book-of-rules

    • Search Google Scholar
    • Export Citation
  • 8.

    Foster C, Lucia A. Running economy: the forgotten factor in elite performance. Sports Med. 2007;37(4):316319. PubMed ID: 17465597 doi:10.2165/00007256-200737040-00011

    • Search Google Scholar
    • Export Citation
  • 9.

    Hoogkamer W, Kipp S, Frank JH, Farina EM, Luo G, Kram R. A comparison of the energetic cost of running in marathon racing shoes. Sports Med. 2018;48(4):10091019. PubMed ID: 29143929 doi:10.1007/s40279-017-0811-2

    • Search Google Scholar
    • Export Citation
  • 10.

    Hébert-Losier K, Pamment M. Advancements in running shoe technology and their effects on running economy and performance—A current concepts overview. Sports Biomech. 2022;22(3):335350. PubMed ID: 35993160 doi:10.1080/14763141.2022.2110512

    • Search Google Scholar
    • Export Citation
  • 11.

    Joubert DP, Jones GP. A comparison of running economy across seven highly cushioned racing shoes with carbon-fibre plates. Footwear Sci. 2022;14(2):7183. doi:10.1080/19424280.2022.2038691

    • Search Google Scholar
    • Export Citation
  • 12.

    Muniz-Pardos B, Sutehall S, Angeloudis K, Guppy FM, Bosch A, Pitsiladis Y. Recent improvements in marathon run times are likely technological, not physiological. Sports Med. 2021;51(3):371378. PubMed ID: 33442838 doi:10.1007/s40279-020-01420-7

    • Search Google Scholar
    • Export Citation
  • 13.

    Joubert DP, Dominy TA, Burns GT. Effects of highly cushioned and resilient racing shoes on running economy at slower running speeds. Int J Sports Physiol Perf. 2023;18(2):164170. doi:10.1123/ijspp.2022-0227

    • Search Google Scholar
    • Export Citation
  • 14.

    Nikolaidis PT, Knechtle B. Effect of age and performance on pacing of marathon runners. Open Access J Sports Med. 2017;8:171180. PubMed ID: 28860876 doi:10.2147/OAJSM.S141649

    • Search Google Scholar
    • Export Citation
  • 15.

    Myrkos A, Smilios I, Kokkinou EM, Rousopoulos E, Douda H. Physiological and race pace characteristics of medium and low-level Athens marathon runners. Sports. 2020;8(9):116. PubMed ID: 32825626 doi:10.3390/sports8090116

    • Search Google Scholar
    • Export Citation
  • 16.

    Hébert-Losier K, Finlayson SJ, Driller MW, Dubois B, Esculier JF, Beaven CM. Metabolic and performance responses of male runners wearing 3 types of footwear: Nike Vaporfly 4%, Saucony Endorphin racing flats, and their own shoes. J Sport Health Sci. 2022;11(3):275284. PubMed ID: 33264686 doi:10.1016/j.jshs.2020.11.012

    • Search Google Scholar
    • Export Citation
  • 17.

    Hébert-Losier K, Finlayson SJ, Lamb PF, et al. Kinematics of recreational male runners in “super,” minimalist and habitual shoes. J Sports Sci. 2022;40(13):14261435. PubMed ID: 35699253 doi:10.1080/02640414.2022.2081767

    • Search Google Scholar
    • Export Citation
  • 18.

    Folland JP, Allen SJ, Black MI, Handsaker JC, Forrester SE. Running technique is an important component of running economy and performance. Med Sci Sports Exerc. 2017;49(7):1412. PubMed ID: 28263283 doi:10.1249/MSS.0000000000001245

    • Search Google Scholar
    • Export Citation
  • 19.

    World Athletics. World Athletics Approved Shoe List. 2023. Accessed on February 27, 2023. https://www.worldathletics.org/about-iaaf/documents/technical-information

    • Search Google Scholar
    • Export Citation
  • 20.

    McArdle WD, Katch F, Katch V. Exercise Physiology: Nutrition, Energy, and Human Performance. Lippincott Williams & Wilkins; 2010.

  • 21.

    Ogueta-Alday A, Morante JC, Rodríguez-Marroyo JA, García-López J. Validation of a new method to measure contact and flight times during treadmill running. J Strength Cond Res. 2013;27(5):14551462. PubMed ID: 22836607 doi:10.1519/JSC.0b013e318269f760

    • Search Google Scholar
    • Export Citation
  • 22.

    Drust B, Waterhouse J, Atkinson G, Edwards B, Reilly T. Circadian rhythms in sports performance: an update. Chronobiol Int. 2005;22(1):2144. PubMed ID: 15865319 doi:10.1081/CBI-200041039

    • Search Google Scholar
    • Export Citation
  • 23.

    Morin JB, Dalleau G, Kyröläinen H, Jeannin T, Belli A. A simple method for measuring stiffness during running. J Appl Biomech. 2005;21(2):167180. PubMed ID: 16082017 doi:10.1123/jab.21.2.167

    • Search Google Scholar
    • Export Citation
  • 24.

    Cohen J. Statistical Power Analysis for the Behavioural Sciences. 2nd ed. Lawrence Erlbaum; 1988.

  • 25.

    Barnes KR, Mcguigan MR, Kilding AE. Lower-body determinants of running economy in male and female distance runners. J Strength Cond Res. 2014;28(5):12891297. PubMed ID: 24126900 doi:10.1519/JSC.0000000000000267

    • Search Google Scholar
    • Export Citation
  • 26.

    Hanley B, Bissas A, Merlino S, Burns GT. Changes in running biomechanics during the 2017 IAAF World Championships men’s 1500 m final. Scand J Med Sci Sports. 2023;33(6):931942. PubMed ID: 36779698 doi:10.1111/sms.14331

    • Search Google Scholar
    • Export Citation
  • 27.

    Nummela A, Keränen T, Mikkelsson LO. Factors related to top running speed and economy. Int J Sports Med. 2007;28(8):655661. PubMed ID: 17549657 doi:10.1055/s-2007-964896

    • Search Google Scholar
    • Export Citation
  • 28.

    Nicol C, Komi PV, Marconnet P. Fatigue effects of marathon running on neuromuscular performance: I. Changes in muscle force and stiffness characteristics. Scand J Med Sci Sports. 1991;1(1):1017. doi:10.1111/j.1600-0838.1991.tb00265.x

    • Search Google Scholar
    • Export Citation
  • 29.

    Dutto DJ, Smith GA. Changes in spring-mass characteristics during treadmill running to exhaustion. Med Sci Sports Exerc. 2002;34(8):13241331. PubMed ID: 12165688 doi:10.1097/00005768-200208000-00014

    • Search Google Scholar
    • Export Citation
  • 30.

    Tenforde A, Hoenig T, Saxena A, Hollander K. Bone stress injuries in runners using carbon fiber plate footwear. Sports Med. 2023;53(8):14991505. PubMed ID: 36780101 doi:10.1007/s40279-023-01818-z

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5809 5809 253
Full Text Views 431 431 2
PDF Downloads 193 193 2