Purpose: Ice hockey is a team invasion sport characterized by repeated high-intensity skating efforts, technical and tactical skill, physical contact, and collisions requiring considerable levels of muscular strength. The purpose of this study was to evaluate the relationships between lower-body vertical force–time metrics and skating qualities in subelite female ice hockey players. Methods: A cross-sectional cohort design was employed utilizing 14 athletes (body mass = 66.7 [1.8] kg; height = 171.6 [6.2] cm; age = 21.1 [1.7] y). The relationships between metrics of lower-body strength collected from a drop jump, squat jump, countermovement jump, loaded countermovement jump, and an isometric squat and 4 skating qualities collected from a linear sprint, repeated sprint test, and a multistage aerobic test were evaluated. Results: The regression models revealed a positive relationship between relative peak force in the isometric squat and skating multistage aerobic test performance (r2 = .388; P = .017) and a positive relationship between repeated-sprint ability and eccentric mean force during the loaded countermovement jump (r2 = .595; P = .001). No significant relationships were observed between strength metrics and skating acceleration or maximal velocity. Conclusions: These data suggest that skating ability is most affected by relative isometric strength in female ice hockey players. It is recommended that practitioners focus training on tasks that improve relative force output. It is also recommended that isometric relative peak force be used as a monitoring metric for this cohort.