A Novel Approach to Determining the Alactic Time Span in Connection with Assessment of the Maximal Rate of Lactate Accumulation in Elite Track Cyclists

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Anna Katharina Dunst Department of Endurance, Institute for Applied Training Science, Leipzig, Germany

Search for other papers by Anna Katharina Dunst in
Current site
Google Scholar
PubMed
Close
*
,
Clemens Hesse German Cycling Federation, Frankfurt am Main, Germany

Search for other papers by Clemens Hesse in
Current site
Google Scholar
PubMed
Close
,
Andri Feldmann Department of Movement and Exercise Science, Institute of Sport Science, University of Bern, Bern, Switzerland

Search for other papers by Andri Feldmann in
Current site
Google Scholar
PubMed
Close
, and
Hans Christer Holmberg Department of Physiology and Pharmacology, Biomedicum C5, Karolinska Institutet, Stockholm, Sweden
Department of Health Sciences, Luleå University of Technology, Luleå, Sweden

Search for other papers by Hans Christer Holmberg in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: Following short-term all-out exercise, the maximal rate of glycolysis is frequently assessed on the basis of the maximal rate of lactate accumulation in the blood. Since the end of the interval without significant accumulation (talac) is 1 of 2 denominators in the calculation employed, accurate determination of this parameter is crucial. Although the very existence and definition of talac, as well as the validity of its determination as time-to-peak power (tPpeak), remain controversial, this parameter plays a key role in anaerobic diagnostics. Here, we describe a novel approach to determination of talac and compare it to the current standard. Methods: Twelve elite track cyclists performed 3 maximal sprints (3, 8, and 12 s) and a high-rate, low-resistance pedaling test on an ergometer with monitoring of crank force and pedaling rate. Before and after each sprint, capillary blood samples were taken for determination of lactate accumulation. Fatigue-free force–velocity and power–velocity profiles were generated. talac was determined as tPpeak and as the time span up to the first systematic deviation from the force–velocity profile (tFf). Results: Accumulation of lactate after the 3-second sprint was significant (0.58 [0.19] mmol L−1; P < .001, d = 1.982). tFf was <3 seconds and tPpeak was ≥3 seconds during all sprints (P < .001, d = − 2.111). Peak power output was lower than maximal power output (P < .001, d = −0.937). Blood lactate accumulation increased linearly with increasing duration of exercise (R2 ≥ .99) and intercepted the x-axis at ∼tFf. Conclusion: Definition of talac as tPpeak can lead to incorrect conclusions. We propose determination of talac based on tFf, the end of the fatigue-free state that may reflect the beginning of blood lactate accumulation.

Dunst (dunst@iat.uni-leipzig.de) is corresponding author.

  • Collapse
  • Expand
  • 1.

    Nitzsche N, Baumgärtel L, Maiwald C, Schulz H. Reproducibility of the blood lactate concentration rate under isokinetic force load. Sports. 2018;6(4):150. doi:

  • 2.

    Nitzsche N, Baumgärtel L, Schulz H. Comparison of maximum lactate formation rates in ergometer sprint and maximum strength loads. Dtsch Z Sportmed. 2018;69:1318. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Mader A, Heck H. Energiestoffwechselregulation, Erweiterung des theoretischen Konzepts und seiner Begründungen. Nachweis der praktischen Nützlichkeit der Simulation des Energiestoffwechsels. BSW. 1994;8(2):124162.

    • Search Google Scholar
    • Export Citation
  • 4.

    Mader A.Die Komponenten der Stoffwechselleistung in den leichtathletischen Ausdauerdisziplinen - Bedeutung für die Wettkampfleistung und Möglichkeiten zu ihrer Bestimmung. In: Tschiene P, ed. Neue Tendenzen im Ausdauertraining. Vol. 12. Bundesausschuss Leistungssport; 1994:127220.

    • Search Google Scholar
    • Export Citation
  • 5.

    Heck H, Schulz H, Bartmus U. Diagnostics of anaerobic power and capacity. Eur J Sport Sci. 2003;3:123. doi:

  • 6.

    Hauser T, Adam J, Schulz H. Comparison of calculated and experimental power in maximal lactate-steady state during cycling. Theor Biol Med Model. 2014;11:25. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Manunzio C, Mester J, Kaiser W, Wahl P. Training intensity distribution and changes in performance and physiology of a 2nd place finisher team of the race across America over a 6 month preparation period. Front Physiol. 2016;7:642. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Quittmann OJ, Schwarz YM, Mester J, Foitschik T, Abel T, Strüder HK. Maximal lactate accumulation rate in all-out exercise differs between cycling and running. Int J Sports. 2020;42:314322. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Hauser T. Untersuchungen zur Validität und Praktikabilität des mathematisch bestimmten maximalen Laktat-steady-states bei radergometrischen Belastungen [Dissertation]. Chemnitz University of Technology; 2013.

    • Search Google Scholar
    • Export Citation
  • 10.

    di Prampero PE. Energetics of muscular exercise. Rev Physiol Biochem Pharmacol. 1981;89:143222. doi:

  • 11.

    Mader A, Heck H, Hollman W.Leistung und Leistungsbegrenzung des menschlichen Organismus interpretiert am Modell thermodynamischer offener Systeme. Ein Beitrag zur Diskussion biologischer Grenzen im Hochleistungssport. In: Mader A, Heck H, Hollman W, eds. Sport an der Grenze menschlicher Leistungsfähigkeit; 1981:6993.

    • Search Google Scholar
    • Export Citation
  • 12.

    Bergman BC, Wolfel EE, Butterfield GE, et al. Active muscle and whole body lactate kinetics after endurance training in men. J Appl Physiol. 1999;87(5):16841696. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Gladden LB. Current trends in lactate metabolism: introduction. Med Sci Sports Exerc. 2008;40(3):475476. doi:

  • 14.

    Juel C. Lactate-proton cotransport in skeletal muscle. Phys Rev. 1997;77(2):321358. doi:

  • 15.

    Brooks GA. The science and translation of lactate shuttle theory. Cell Metab. 2018;27(4):757785. doi:

  • 16.

    Jamnick NA, Pettitt RW, Granata C, Pyne DP, Bishop DJ. An examination and critique of current methods to determine exercise intensity. Sports Med. 2020;50:17291756. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Gladden LB. Muscle as a consumer of lactate. Med Sci Sports Exerc. 2000;32:764771. doi:

  • 18.

    Chung Y, Sharman R, Carlsen R, Unger SW, Larson D, Jue T. Metabolic fluctuation during a muscle contraction cycle. Am J Physiol. 1998;274:C846C852. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Shulman RG, Rothman DL. The “glycogen shunt” in exercising muscle: a role for glycogen in muscle energetics and fatigue. Proc Natl Acad Sci USA. 2001;98:457461. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Lytton J, Westlin M, Burk SE, Shull GE, MacLennan DH. Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J Biol Chem. 1992;267(20):1448314489. PubMed ID: 1385815

    • Search Google Scholar
    • Export Citation
  • 21.

    Sargeant AJ. Human power output and muscle fatigue. Int J Sports Med. 1994;15(3):116121. doi:

  • 22.

    Reggiani C, te Kronnie T. RyR isoforms and fibre type-specific expression of proteins controlling intracellular calcium concentration in skeletal muscles. J Muscle Res Cell Motil. 2006;27:327335. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Greenhaff PL, Nevill ME, Söderlund K, et al. The metabolic responses of human type I and II muscle fibres during maximal treadmill sprinting. J Physiol. 1994;478:149155. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Martin JC, Wagner BM, Coyle EF. Inertial-load method determines maximal cycling power in a single exercise bout. Med Sci Sports Exerc. 1997;29(11):15051512. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Dunst AK. Anwendung von Kraft-Geschwindigkeits-Profilen im Bahnradsport. In: Lehmann F, Wenzel U, Sandau I (Hrsg.). Kräftiger, Schneller, Ausdauernder - Entwicklung der Muskulären Leistung im Hochleistungstraining. Meyer & Meyer Verlag; 2020:113120.

    • Search Google Scholar
    • Export Citation
  • 26.

    Driss T, Vandewalle H. The measurement of maximal (anaerobic) power output on a cycle ergometer: a critical review. Biomed Res Int. 2013;2013:589361. doi:

  • 27.

    Dunst AK, Hesse C, Ueberschär O, Holmberg H-C. Fatigue-free force-velocity and power-velocity profiles for elite track sprint cyclists: the influence of duration, gear ratio and pedalling rates. Sports. 2022;10(9):130. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Sanchez-Medina L, Perez CE, Gonzalez-Badillo JJ. Importance of the propulsive phase in strength assessment. Int J Sports Med. 2010;31:123129. doi:

  • 29.

    Jovanović M, Flanagan E. Researched applications of velocity based strength training. J Aus Strength Cond. 2014;22(2):5869.

  • 30.

    Mann JB, Ivey PA, Sayers SP. Velocity-based training in football. Strength Cond J. 2015;37(6):5257. doi:

  • 31.

    Sašek M, Mirkov DM, Hadžić V, Šarabon N. The validity of the 2-point method for assessing the force-velocity relationship of the knee flexors and knee extensors: the relevance of distant force-velocity testing. Front Physiol. 2022;13:849275. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Beneke R, Jumah MD, Leithäuser RM. Modelling the lactate response to short-term all out exercise. Dyn Med. 2007;6:10. doi:

  • 33.

    Ellis PD.The Essential Guide to Effect Sizes: Statistical Power, Meta-analysis, and the Interpretation of Research Results. Cambridge University Press; 2010.

    • Search Google Scholar
    • Export Citation
  • 34.

    Hirvonen JSR, Rusko H, Härkönen M. Breakdown of high-energy phosphate compounds and lactate accumulation during short supramaximal exercise. Eur J Appl Physiol Occup Physiol. 1987;56:253259. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Beneke R, Pollmann C, Bleif I, Leithäuser RM, Hütler M. How anaerobic is the Wingate anaerobic test for humans. Eur J Appl Physiol. 2002;87:388392. doi:

  • 36.

    Leithäuser RM, Böning D, Hütler M, Beneke R. Enhancement on Wingate anaerobic test performance with hyperventilation. J Sports Physiol Perform. 2016;11:627634. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Dunst AK. Trends und Perspektiven im Radsport - Der Trend großer Übersetzungen und seine Konsequenz für das physiologische Anforderungsprofil im Bahnradsprint. Leistungssport. 2021;51:3437.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1848 1848 119
Full Text Views 145 145 4
PDF Downloads 200 200 5