Effects of Highly Cushioned and Resilient Racing Shoes on Running Economy at Slower Running Speeds

Click name to view affiliation

Dustin P. Joubert Department of Kinesiology and Health Science, Stephen F. Austin State University, Nacogdoches, TX, USA
Department of Kinesiology, St. Edward’s University, Austin, TX, USA

Search for other papers by Dustin P. Joubert in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0565-3310 *
,
Trace A. Dominy Department of Kinesiology and Health Science, Stephen F. Austin State University, Nacogdoches, TX, USA

Search for other papers by Trace A. Dominy in
Current site
Google Scholar
PubMed
Close
, and
Geoffrey T. Burns School of Kinesiology, University of Michigan, Ann Arbor, MI, USA

Search for other papers by Geoffrey T. Burns in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5225-588X
Restricted access

Purpose: The Nike Vaporfly line of running shoes improves running economy by ∼2.7% to 4.2% at running speeds of 13 to 18 km·h−1. It is unclear whether similar benefits are conferred at slower speeds. Our purpose was to determine the effects of the Nike ZoomX Vaporfly Next% 2 (VFN2) on running economy at 10 and 12 km·h−1 compared with a mass-matched control (CTRL) shoe. Methods: Sixteen runners completed 4 × 5-minute trials at both 10 and 12 km·h−1 on the same day. Each shoe was tested twice at each speed in a counterbalanced, mirrored sequence. Data are displayed as mean (SD). Results: A 2-way repeated-measures analysis of variance showed a significant shoe × speed interaction for oxygen consumption (P = .021). At 12 km·h−1, oxygen consumption (in mL·kg−1·min−1) was lower (−1.4% [1.1%]; P < .001) for VFN2 (35.8 [1.7]) relative to CTRL (36.4 [1.7]). That was greater in magnitude than the differences observed at 10 km·h−1 (−0.9% [1.8%]; P = .065) between VFN2 (29.4 [1.9]) and CTRL (29.6 [1.9]). Conclusions: From these data, it appears that the VFN2 still enhances running economy at 10 and 12 km·h−1; however, these benefits are smaller in magnitude compared with previous research at faster speeds.

  • Collapse
  • Expand
  • 1.

    Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586(1):3544. doi:10.1113/jphysiol.2007.143834

  • 2.

    Hoogkamer W, Kipp S, Frank JH, Farina EM, Luo G, Kram R. A comparison of the energetic cost of running in marathon racing shoes. Sports Med. 2018;48(4):10091019. doi:10.1007/s40279-017-0811-2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Barnes KR, Kilding AE. A randomized crossover study investigating the running economy of highly-trained male and female distance runners in marathon racing shoes versus track spikes. Sports Med. 2019;49(2):331342. doi:10.1007/s40279-018-1012-3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Whiting CS, Hoogkamer W, Kram R. Metabolic cost of level, uphill, and downhill running in highly cushioned shoes with carbon-fiber plates. J Sport Health Sci. 2021;11(3):303308. doi:10.1016/j.jshs.2021.10.004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Hunter I, McLeod A, Valentine D, Low T, Ward J, Hager R. Running economy, mechanics, and marathon racing shoes. J Sports Sci. 2019;37(20):23672373. doi:10.1080/02640414.2019.1633837

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Joubert DP, Jones GP. A comparison of running economy across seven highly cushioned racing shoes with carbon-fibre plates. Footwear Sci. 2022;14:7183. doi:10.1080/19424280.2022.2038691

    • Search Google Scholar
    • Export Citation
  • 7.

    Healey LA, Hoogkamer W. Longitudinal bending stiffness does not affect running economy in Nike Vaporfly shoes. J Sport Health Sci. 2022;11:285292. doi:10.1016/j.jshs.2021.07.002

    • Search Google Scholar
    • Export Citation
  • 8.

    Nilsson J, Thorstensson A. Ground reaction forces at different speeds of human walking and running. Acta Physiol Scand. 1989;136(2):217227. doi:10.1111/j.1748-1716.1989.tb08655.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    McMahon TA, Cheng GC. The mechanics of running: how does stiffness couple with speed? J Biomech. 1990;23(suppl 1):6578. doi:10.1016/0021-9290(90)90042-2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    McLeod AR, Bruening D, Johnson AW, Ward J, Hunter I. Improving running economy through altered shoe bending stiffness across speeds. Footwear Sci. 2020;12(2):7989. doi:10.1080/19424280.2020.1734870

    • Search Google Scholar
    • Export Citation
  • 11.

    Day E, Hahn M. Optimal footwear longitudinal bending stiffness to improve running economy is speed dependent. Footwear Sci. 2020;12(1):313. doi:10.1080/19424280.2019.1696897

    • Search Google Scholar
    • Export Citation
  • 12.

    Hébert-Losier K, Finlayson SJ, Driller MW, Dubois B, Esculier JF, Beaven CM. Metabolic and performance responses of male runners wearing 3 types of footwear: Nike Vaporfly 4%, Saucony Endorphin racing flats, and their own shoes. J Sport Health Sci. 2020;11(3):275284. doi:10.1016/j.jshs.2020.11.012

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Thornton ZA, Joubert DP. Effect of treadmill surface stiffness on the running economy benefits of a highly-cushioned racing shoe: a pilot study. Intl J Ex Sci: Conf Proc. 2022;2(14):Article 111. https://digitalcommons.wku.edu/ijesab/vol2/iss14/111/

    • Search Google Scholar
    • Export Citation
  • 14.

    Péronnet F, Massicotte D. Table of nonprotein respiratory quotient: an update. Can J Sport Sci. 1991;16(1):2329. PubMed ID: 1645211

  • 15.

    Adams D, Pozzi F, Carroll A, Rombach A, Zeni J Jr. Validity and reliability of a commercial fitness watch for measuring running dynamics. J Orthop Sports Phys Ther. 2016;46(6):471476. doi:10.2519/jospt.2016.6391

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Frederick EC. Physiological and ergonomics factors in running shoe design. Appl Ergon. 1984;15(4):281287. doi:10.1016/0003-6870(84)90199-6

  • 17.

    Black MI, Kranen SH, Kadach S, et al. Highly cushioned shoes improve running performance in both the absence and presence of muscle damage. Med Sci Sports Exerc. 2022;54(4):633645. doi:10.1249/MSS.0000000000002832

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Morin JB, Dalleau G, Kyröläinen H, Jeannin T, Belli A. A simple method for measuring stiffness during running. J Appl Biomech. 2005;21(2):167180. doi:10.1123/jab.21.2.167

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Munro CF, Miller DI, Fuglevand AJ. Ground reaction forces in running: a reexamination. J Biomech. 1987;20(2):147155. doi:10.1016/0021-9290(87)90306-X

    • Search Google Scholar
    • Export Citation
  • 20.

    Derderian T, Frederick EC, Gross AL, Inventors; Nike Inc, Assignee. Shock absorbing sole layer. US patent 4,535,553. August 20, 1985.

  • 21.

    Ortega JA, Healey LA, Swinnen W, Hoogkamer W. Energetics and biomechanics of running footwear with increased longitudinal bending stiffness: a narrative review. Sports Med. 2021;51(5):873894. doi:10.1007/s40279-020-01406-5

    • Search Google Scholar
    • Export Citation
  • 22.

    Kipp S, Byrnes WC, Kram R. Calculating metabolic energy expenditure across a wide range of exercise intensities: the equation matters. Appl Physiol Nutr Metab. 2018;43(6):639642. doi:10.1139/apnm-2017-0781

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Kirby BS, Hughes E, Haines M, Stinman S, Winn BJ. Influence of performance running footwear on muscle soreness and damage. Footwear Sci. 2019;11(suppl 1):S188S189. doi:10.1080/19424280.2019.1606325

    • Search Google Scholar
    • Export Citation
  • 24.

    Quealy K, Katz J. Nike says its $250 running shoes will make you run much faster. What if that’s actually true? The New York Times. July 18, 2018. Accessed December 28, 2022.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5771 2217 316
Full Text Views 378 227 1
PDF Downloads 365 154 1