Curcumin Attenuates Delayed-Onset Muscle Soreness and Muscle Function Deficits Following a Soccer Match in Male Professional Soccer Players

in International Journal of Sports Physiology and Performance

Click name to view affiliation

William AbbottAmerican Express Elite Performance Centre, Brighton and Hove Albion F.C., Lancing, United Kingdom

Search for other papers by William Abbott in
Current site
Google Scholar
PubMed
Close
,
Emily J. HansellSchool of Sport, Exercise, and Health Science, Loughborough University, Lougborough, United Kingdom

Search for other papers by Emily J. Hansell in
Current site
Google Scholar
PubMed
Close
,
Adam BrettAmerican Express Elite Performance Centre, Brighton and Hove Albion F.C., Lancing, United Kingdom

Search for other papers by Adam Brett in
Current site
Google Scholar
PubMed
Close
,
Jakob ŠkarabotSchool of Sport, Exercise, and Health Science, Loughborough University, Lougborough, United Kingdom

Search for other papers by Jakob Škarabot in
Current site
Google Scholar
PubMed
Close
,
Lewis J. JamesSchool of Sport, Exercise, and Health Science, Loughborough University, Lougborough, United Kingdom

Search for other papers by Lewis J. James in
Current site
Google Scholar
PubMed
Close
, and
Tom CliffordSchool of Sport, Exercise, and Health Science, Loughborough University, Lougborough, United Kingdom

Search for other papers by Tom Clifford in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Purpose: To examine the effects of acute curcumin (CURC) supplementation on recovery from a soccer match in male professional players. Methods: In a randomized, placebo-controlled, crossover design, 11 players from the under-23 team of an English Premier League club (age 19 [1] y, body mass 79.4 [7.9] kg, height 180.8 [5.7] cm) consumed 500 mg of CURC or a control (medium-chain triglycerides) immediately and 12 and 36 hours after a 90-minute match. Countermovement jump height (CMJ), reactive strength index (RSI), delayed-onset muscle soreness (DOMS, 0–200 mm), and subjective well-being were measured before and 12, 36, and 60 hours postmatch. Global positioning systems measured external load during matches, and dietary intake was recorded across the testing period. Results: External load and dietary intake did not differ between conditions (P ≥ .246). CURC attenuated deficits in CMJ (P ≤ .004) and RSI (P ≤ .001) and reduced DOMS (P ≤ .004) at all postmatch time points (except 60 h post for RSI). The greatest difference between control and CURC was 12 hours post for CMJ (P < .001, 1.91 [4.40] cm, 95% CI, 1.25 to 2.57, g = 0.36) and RSI (P = .003, 0.40 [0.41] AU, 95% CI, 0.17 to 0.63, g = 0.90) and 36 hours post for DOMS (P < .001, 47 [23] mm, 95% CI, −67 to −27, g = 2.12). Conclusions: CURC intake <36 hours after a soccer match attenuated DOMS and muscle function deficits, suggesting that CURC may aid recovery in professional male soccer players.

Clifford (t.clifford@lboro.ac.uk) is corresponding author.

  • Collapse
  • Expand
  • 1.

    Paulsen G, Mikkelsen UR, Raastad T, Peake JM. Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exerc Immunol Rev. 2012;18:4297. PubMed ID: 22876722

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Hyldahl RD, Hubal MJ. Lengthening our perspective: morphological, cellular, and molecular responses to eccentric exercise. Muscle Nerve. 2014;49(2):155170. doi:10.1002/mus.24077

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Davis JM, Murphy EA, Carmichael MD, et al. Curcumin effects on inflammation and performance recovery following eccentric exercise-induced muscle damage. Am J Physiol - Regul Integr Comp Physiol. 2007;292(6):21682173. doi:10.1152/ajpregu.00858.2006

    • Search Google Scholar
    • Export Citation
  • 4.

    Field A, Harper LD, Chrismas BCR, et al. The use of recovery strategies in professional soccer: a worldwide survey. 2021;16(12):18041815. doi:10.1123/ijspp.2020-0799

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Schoenfeld BJ. The use of nonsteroidal anti-inflammatory drugs for exercise-induced muscle damage: implications for skeletal muscle development. Sport Med. 2012;42(12):10171028. doi:10.2165/11635190-000000000-00000

    • Search Google Scholar
    • Export Citation
  • 6.

    Frank J, Fukagawa NK, Bilia AR, et al. Terms and nomenclature used for plant-derived components in nutrition and related research: efforts toward harmonization. Nutr Rev. 2020;78(6):451458. doi:10.1093/nutrit/nuz081

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Fang W, Nasir Y. The effect of curcumin supplementation on recovery following exercise-induced muscle damage and delayed-onset muscle soreness: a systematic review and meta-analysis of randomized controlled trials. Phyther Res. 2021;35(4):17681781. doi:10.1002/ptr.6912

    • Search Google Scholar
    • Export Citation
  • 8.

    Kang G, Kong PJ, Yuh YJ, et al. Curcumin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression by inhibiting activator protein 1 and nuclear factor κB bindings in BV2 microglial cells. J Pharmacol Sci. 2004;94(3):325328. doi:10.1254/jphs.94.325

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Singh S, Aggarwal BB. Activation of transcription factor NF-κB is suppressed by curcumin (diferulolylmethane). J Biol Chem. 1995;270(42):2499525000. doi:10.1074/jbc.270.42.24995

    • Search Google Scholar
    • Export Citation
  • 10.

    McFarlin BK, Venable AS, Henning AL, et al. Reduced inflammatory and muscle damage biomarkers following oral supplementation with bioavailable curcumin. BBA Clin. 2016;5:7278. doi:10.1016/j.bbacli.2016.02.003

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Tanabe Y, Chino K, Ohnishi T, et al. Effects of oral curcumin ingested before or after eccentric exercise on markers of muscle damage and inflammation. Scand J Med Sci Sport. 2019;29(4):524534. doi:10.1111/sms.13373

    • Search Google Scholar
    • Export Citation
  • 12.

    Delecroix B, Abaïdia AE, Leduc C, Dawson B, Dupont G. Curcumin and piperine supplementation and recovery following exercise induced muscle damage: a randomized controlled trial. J Sport Sci Med. 2017;16(1):147153. PubMed ID: 28344463

    • Search Google Scholar
    • Export Citation
  • 13.

    Abbott W, Brashill C, Brett A, Clifford T. Tart cherry juice: no effect on muscle function loss or muscle soreness in professional soccer players after a match. Int J Sport Physiol Perform. 2020;15(2):249254. doi:10.1123/ijspp.2019-0221

    • Search Google Scholar
    • Export Citation
  • 14.

    Hedges L V, Olkin I. Statisitical Methods for Meta-Analysis. Academic Press; 1985.

  • 15.

    Tanabe Y, Maeda S, Akazawa N, et al. Attenuation of indirect markers of eccentric exercise-induced muscle damage by curcumin. Eur J Appl Physiol. 2015;115(9):19491957. doi:10.1007/s00421-015-3170-4

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Jäger R, Purpura M, Kerksick CM. Eight weeks of a high dose of curcumin supplementation may attenuate performance decrements following muscle-damaging exercise. Nutrients. 2019;11(7):1692. doi:10.3390/nu11071692

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Kawanishi N, Kato K, Takahashi M, et al. Curcumin attenuates oxidative stress following downhill running-induced muscle damage. Biochem Biophys Res Commun. 2013;441(3):573578. doi:10.1016/j.bbrc.2013.10.119

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Lao CD, Ruffin MT IV, Normolle D, et al. Dose escalation of a curcuminoid formulation. BMC Complement Altern Med. 2006;6:10. doi:10.1186/1472-6882-6-10

  • 19.

    Sahin K, Pala R, Tuzcu M, et al. Curcumin prevents muscle damage by regulating NF-κB and Nrf2 pathways and improves performance: an in vivo model. J Inflamm Res. 2016;9:147154. doi:10.2147/JIR.S110873

    • Search Google Scholar
    • Export Citation
  • 20.

    Mourkioti P, Kratsios P, Luedde T, et al. Targeted ablation of IKK2 improves skeletal muscle strength, maintains mass, and promotes regeneration. J Clin Invest. 2006;116(11):29452954. doi:10.1172/JCI28721

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Clutterbuck AL, Allaway D, Harris P, Mobasheri A. Curcumin reduces prostaglandin E2, matrix metalloproteinase-3 and proteoglycan release in the secretome of interleukin 1β-treated articular cartilage. F1000Res. 2013;2:147. doi:10.12688/f1000research.2-147.v1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Lin X, Bai D, Wei Z, et al. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS One. 2019;14(5):e0216711. doi:10.1371/journal.pone.0216711

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Shahcheraghi SH, Salemi F, Peirovi N, et al. Nrf2 regulation by curcumin: molecular aspects for therapeutic prospects. Molecules. 2022;27(1):167. doi:10.3390/molecules27010167

    • Search Google Scholar
    • Export Citation
  • 24.

    Wangdi JT, O’Leary MF, Kelly VG, et al. Tart cherry supplement enhances skeletal muscle glutathione peroxidase expression and functional recovery after muscle damage. Med Sci Sports Exerc. 2022;54(4):609621. doi:10.1249/MSS.0000000000002827

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Abbott W, Brownlee TE, Harper LD, Naughton RJ, Clifford T. The independent effects of match location, match result and the quality of opposition on subjective wellbeing in under 23 soccer players: a case study. Res Sport Med. 2018;26(3):262275. doi:10.1080/15438627.2018.1447476

    • Search Google Scholar
    • Export Citation
  • 26.

    Sciberras JN, Galloway SDR, Fenech A, et al. The effect of turmeric (Curcumin) supplementation on cytokine and inflammatory marker responses following 2 hours of endurance cycling. J Int Soc Sports Nutr. 2015;12(1):5. doi:10.1186/s12970-014-0066-3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Cox KHM, White DJ, Pipingas A, Poorun K, Scholey A. Further evidence of benefits to mood and working memory from lipidated curcumin in healthy older people: a 12-week, double-blind, placebo-controlled, partial replication study. Nutrients. 2020;12(6):120. doi:10.3390/nu12061678

    • Search Google Scholar
    • Export Citation
  • 28.

    Rainey-Smith SR, Brown BM, Sohrabi HR, et al. Curcumin and cognition: a randomised, placebo-controlled, double-blind study of community-dwelling older adults. Br J Nutr. 2016;115(12):21062113. doi:10.1017/S0007114516001203

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Schiborr C, Kocher A, Benham D, Jandasek J, Toelstede S, Frank J. The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol Nutr Food Res. 2014;58(3):516527. doi:10.1002/mnfr.201300724

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Clifford T, Jeffries O, Stevenson EJ, Davies KAB. The effects of vitamin C and E on exercise-induced physiological adaptations: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2020;60(21):36693679. doi:10.1080/10408398.2019.1703642

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1689 1689 330
Full Text Views 138 138 26
PDF Downloads 200 200 31