Personalizing Resistance Training Mitigates Neuromuscular and Perceived Fatigue: The Autoregulation Cluster Training Method

Click name to view affiliation

Antonio Dello Iacono Institute for Clinical Exercise and Health Science, School of Health and Life Sciences, University of the West of Scotland, Hamilton, United Kingdom

Search for other papers by Antonio Dello Iacono in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0204-0957 *
,
Josh Hillan Institute for Clinical Exercise and Health Science, School of Health and Life Sciences, University of the West of Scotland, Hamilton, United Kingdom

Search for other papers by Josh Hillan in
Current site
Google Scholar
PubMed
Close
, and
Kevin Watson Institute for Clinical Exercise and Health Science, School of Health and Life Sciences, University of the West of Scotland, Hamilton, United Kingdom
Strength and Conditioning Department, Glasgow School of Sport, Glasgow, United Kingdom

Search for other papers by Kevin Watson in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To compare predetermined and autoregulated resistance training sessions on velocity loss and perceived fatigue. Methods: Twenty-six resistance-trained men completed 3 sessions including the back-squat and bench-press exercises matched for load (75% of 1-repetition maximum), volume (24 repetitions), and total rest (240 s). Sessions were randomly performed as traditional set (TRA), 3 sets of 8 repetitions with 120-second interset rests; cluster interset-rest redistribution (IRR), 6 clusters of 4 repetitions with 48-second between-clusters rests; and autoregulation cluster training (ACT), a personalized combination of clusters, repetitions per cluster, and between-clusters rest regulated on a velocity loss threshold. The comparative effects were evaluated on velocity loss outputs measured with a linear encoder and perceived fatigue responses reported using a single-item scale. Results: IRR and ACT induced less velocity loss than TRA (b = −2.09, P < .001). ACT also mitigated velocity loss more than IRR (b = −2.31, P < .001). The back squat resulted in greater velocity loss compared to the bench press (b = 1.83, P < .001). Perceived fatigue responses mirrored the pattern observed for the velocity loss outputs (IRR and ACT vs TRA: b = −0.64, P < .001; ACT vs IRR: b = −1.05, P < .001; back squat vs bench press: b = 0.46, P = .005). Conclusions: IRR and ACT reduced neuromuscular and perceived fatigue, likely due to their cluster-set structures’ embedding frequent windows of interset rest. However, the ACT was overall more effective, presumably given its personalized structure.

Supplementary Materials

    • Supplementary file 1 (PDF 24 KB)
    • Supplementary file 2 (PDF 27 KB)
  • Collapse
  • Expand
  • 1.

    Suchomel TJ, Nimphius S, Stone MH. The importance of muscular strength in athletic performance. Sports Med. 2016;46(10):14191449. PubMed ID: 26838985 doi:10.1007/s40279-016-0486-0

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    American College of Sports Medicine. American college of sports medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687708. doi:10.1249/MSS.0b013e3181915670

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Shimano T, Kraemer WJ, Spiering BA, et al. Relationship between the number of repetitions and selected percentages of one repetition maximum in free weight exercises in trained and untrained men. J Strength Cond Res. 2006;20(4):819823. PubMed ID: 17194239 doi:10.1519/r-18195.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Knowles OE, Drinkwater EJ, Urwin CS, Lamon S, Aisbett B. Inadequate sleep and muscle strength: implications for resistance training. J Sci Med Sport. 2018;21(9):959968. PubMed ID: 29422383 doi:10.1016/j.jsams.2018.01.012

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Judelson DA, Maresh CM, Anderson JM, et al. Hydration and muscular performance: does fluid balance affect strength, power and high-intensity endurance? Sports Med Auckl NZ. 2007;37(10):907921. doi:10.2165/00007256-200737100-00006

    • Search Google Scholar
    • Export Citation
  • 6.

    Richens B, Cleather D. The relationship between the number of repetitions performed at given intensities is different in endurance and strength trained athletes. Biol Sport. 2014;31(2):157161. PubMed ID: 24899782 doi:10.5604/20831862.1099047

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Jeffries AC, Marcora SM, Coutts AJ, Wallace L, McCall A, Impellizzeri FM. Development of a revised conceptual framework of physical training for use in research and practice. Sports Med Auckl NZ. 2022;52(4):709724. doi:10.1007/s40279-021-01551-5

    • Search Google Scholar
    • Export Citation
  • 8.

    Greig L, Stephens Hemingway BH, Aspe RR, Cooper K, Comfort P, Swinton PA. Autoregulation in resistance training: addressing the inconsistencies. Sports Med. 2020;50(11):18731887. PubMed ID: 32813181 doi:10.1007/s40279-020-01330-8

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Grgic J, Schoenfeld BJ, Orazem J, Sabol F. Effects of resistance training performed to repetition failure or non-failure on muscular strength and hypertrophy: a systematic review and meta-analysis. J Sport Health Sci. 2022;11(2):202211. PubMed ID: 33497853 doi:10.1016/j.jshs.2021.01.007

    • Search Google Scholar
    • Export Citation
  • 10.

    Vieira AF, Umpierre D, Teodoro JL, et al. Effects of resistance training performed to failure or not to failure on muscle strength, hypertrophy, and power output: a systematic review with meta-analysis. J Strength Cond Res. 2021;35(4):11651175. PubMed ID: 33555822 doi:10.1519/JSC.0000000000003936

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Jukic I, Van Hooren B, Ramos AG, Helms ER, McGuigan MR, Tufano JJ. The effects of set structure manipulation on chronic adaptations to resistance training: a systematic review and meta-analysis. Sports Med. 2021;51(5):10611086. PubMed ID: 33417154 doi:10.1007/s40279-020-01423-4

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Jukic I, Ramos AG, Helms ER, McGuigan MR, Tufano JJ. Acute effects of cluster and rest redistribution set structures on mechanical, metabolic, and perceptual fatigue during and after resistance training: a systematic review and meta-analysis. Sports Med. 2020;50(12):22092236. PubMed ID: 32901442 doi:10.1007/s40279-020-01344-2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Davies TB, Tran DL, Hogan CM, Haff GG, Latella C. Chronic effects of altering resistance training set configurations using cluster sets: a systematic review and meta-analysis. Sports Med Auckl NZ. 2021;51(4):707736. doi:10.1007/s40279-020-01408-3

    • Search Google Scholar
    • Export Citation
  • 14.

    Latella C, Teo WP, Drinkwater EJ, Kendall K, Haff GG. The acute neuromuscular responses to cluster set resistance training: a systematic review and meta-analysis. Sports Med Auckl NZ. 2019;49(12):18611877. doi:10.1007/s40279-019-01172-z

    • Search Google Scholar
    • Export Citation
  • 15.

    Leite CMF, Profeta VLS, Chaves SFN, Benine RPC, Bottaro M, Ferreira-Júnior JB. Does exercise-induced muscle damage impair subsequent motor skill learning? Hum Mov Sci. 2019;67:102504. doi:10.1016/j.humov.2019.102504

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Tufano JJ, Brown LE, Haff GG. Theoretical and practical aspects of different cluster set structures: a systematic review. J Strength Cond Res. 2017;31(3):848867. PubMed ID: 27465625 doi:10.1519/JSC.0000000000001581

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Jukic I, Helms ER, McGuigan MR, García-Ramos A. Using cluster and rest redistribution set structures as alternatives to resistance training prescription method based on velocity loss thresholds. PeerJ. 2022;10:e13195. doi:10.7717/peerj.13195

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Weakley J, Mann B, Banyard H, McLaren S, Scott T, Garcia-Ramos A. Velocity-based training: from theory to application. Strength Cond J. 2021;43(2):3149. doi:10.1519/SSC.0000000000000560

    • Search Google Scholar
    • Export Citation
  • 19.

    Dello Iacono A, Martone D, Hayes L. Acute mechanical, physiological and perceptual responses in older men to traditional-set or different cluster-set configuration resistance training protocols. Eur J Appl Physiol. 2020;120(10):23112323. PubMed ID: 32778913 doi:10.1007/s00421-020-04453-y

    • Search Google Scholar
    • Export Citation
  • 20.

    Micklewright D, St Clair Gibson A, Gladwell V, Al Salman A. Development and validity of the rating-of-fatigue scale. Sports Med Auckl NZ. 2017;47(11):23752393. doi:10.1007/s40279-017-0711-5

    • Search Google Scholar
    • Export Citation
  • 21.

    Gorostiaga EM, Navarro-Amézqueta I, Calbet JAL, et al. Blood ammonia and lactate as markers of muscle metabolites during leg press exercise. J Strength Cond Res. 2014;28(10):27752785. PubMed ID: 24736776 doi:10.1519/JSC.0000000000000496

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    González-Hernández JM, García-Ramos A, Castaño-Zambudio A, et al. Mechanical, metabolic, and perceptual acute responses to different set configurations in full squat. J Strength Cond Res. 2020;34(6):15811590. PubMed ID: 28700515 doi:10.1519/JSC.0000000000002117

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Halperin I, Wulf G, Vigotsky AD, Schoenfeld BJ, Behm DG. Autonomy: a missing ingredient of a successful program? Strength Cond J. 2018;40(4):1825. doi:10.1519/SSC.0000000000000383

    • Search Google Scholar
    • Export Citation
  • 24.

    Dello Iacono A, Beato M, Halperin I. Self-selecting the number of repetitions in potentiation protocols: enhancement effects on jumping performance. Int J Sports Physiol Perform. 2020;16(3):353359. PubMed ID: 33271502 doi:10.1123/ijspp.2019-0926

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Vernillo G, Temesi J, Martin M, Millet GY. Mechanisms of fatigue and recovery in upper versus lower limbs in men. Med Sci Sports Exerc. 2018;50(2):334343. PubMed ID: 28991037 doi:10.1249/MSS.0000000000001445

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Mayo X, Iglesias-Soler E, Fernández-Del-Olmo M. Effects of set configuration of resistance exercise on perceived exertion. Percept Mot Skills. 2014;119(3):825837. PubMed ID: 25456248 doi:10.2466/25.29.PMS.119c30z3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Sindiani M, Lazarus A, Iacono AD, Halperin I. Perception of changes in bar velocity in resistance training: accuracy levels within and between exercises. Physiol Behav. 2020;224:113025. doi:10.1016/j.physbeh.2020.113025

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Lazarus A, Halperin I, Vaknin GJ, Iacono AD. Perception of changes in bar velocity as a resistance training monitoring tool for athletes. Physiol Behav. 2021;231:113316. doi:10.1016/j.physbeh.2021.113316

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Rodríguez-Rosell D, Yáñez-García JM, Sánchez-Medina L, Mora-Custodio R, González-Badillo JJ. Relationship between velocity loss and repetitions in reserve in the bench press and back squat exercises. J Strength Cond Res. 2020;34(9):25372547. PubMed ID: 31045753 doi:10.1519/JSC.0000000000002881

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Deci EL, Ryan RM. The “what” and “why” of goal pursuits: human needs and the self-determination of behavior. Psychol Inq. 2000;11(4):227268. doi:10.1207/S15327965PLI1104_01

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1881 1458 121
Full Text Views 245 237 56
PDF Downloads 128 117 5