Bioenergetic Analysis and Fatigue Assessment During the Fran Workout in Experienced Crossfitters

Click name to view affiliation

Manoel Rios Center of Research, Education, Innovation and Intervention in Sport, Faculty of Sport, University of Porto, Porto, Portugal
Porto Biomechanics Laboratory, Faculty of Sport, University of Porto, Porto, Portugal

Search for other papers by Manoel Rios in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3574-6692
,
Rodrigo Zacca Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal

Search for other papers by Rodrigo Zacca in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0494-0000
,
Rui Azevedo Toxicology Research Unit, University Institute of Health Sciences, CESPU CRL, Gandra, Portugal

Search for other papers by Rui Azevedo in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8904-002X
,
Pedro Fonseca Porto Biomechanics Laboratory, Faculty of Sport, University of Porto, Porto, Portugal

Search for other papers by Pedro Fonseca in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4885-4924
,
David B. Pyne Research Institute for Sport & Exercise, University of Canberra, Canberra, ACT, Australia

Search for other papers by David B. Pyne in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1555-5079
,
Victor Machado Reis Department of Sport Sciences, Exercise and Health, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
Research Center in Sports Sciences, Health Sciences and Human Development, Vila Real, Portugal

Search for other papers by Victor Machado Reis in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4996-1414
,
Daniel Moreira-Gonçalves Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal

Search for other papers by Daniel Moreira-Gonçalves in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7404-7405
, and
Ricardo J. Fernandes Center of Research, Education, Innovation and Intervention in Sport, Faculty of Sport, University of Porto, Porto, Portugal
Porto Biomechanics Laboratory, Faculty of Sport, University of Porto, Porto, Portugal

Search for other papers by Ricardo J. Fernandes in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5811-0443 *
Restricted access

Aim: To quantify the physiological demands and impact of muscle function t of the Fran workout, one of the most popular CrossFit benchmarks. Methods: Twenty experienced CrossFitters—16 male: 29 (6) years old and 4 female: 26 (5) years old— performed 3 rounds (with 30-s rests in between) of 21–21, 15–15, and 9–9 front squats to overhead press plus pull-up repetitions. Oxygen uptake and heart rate were measured at baseline, during the workout, and in the recovery period. Rating of perceived exertion, blood lactate, and glucose concentrations were assessed at rest, during the intervals, and in the recovery period. Muscular fatigue was also monitored at rest and at 5 minutes, 30 minutes, and 24 hours postexercise. Repeated-measures analysis of variance was performed to compare time points. Results: Aerobic (52%–29%) and anaerobic alactic (30%–23%) energy contributions decreased and the anaerobic lactic contribution increased (18%–48%) across the 3 rounds of the Fran workout. Countermovement jump height decreased by 8% (−12 to −3) mean change (95% CI), flight duration by 14% (−19 to −7), maximum velocity by 3% (−5 to −0.1), peak force 4% (−7 to −0.1), and physical performance (plank prone 47% [−54 to −38]) were observed. Conclusions: It appears that the Fran workout is a physically demanding activity that recruits energy from both aerobic and anaerobic systems. This severe-intensity workout evokes substantial postexercise fatigue and corresponding reduction in muscle function.

  • Collapse
  • Expand
  • 1.

    Schlegel P. CrossFit® training strategies from the perspective of concurrent training: a systematic review. J Sports Sci Med. 2020;19(4):670680. PubMed ID: 33239940

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Rios M, Macan T, Stevanović-Silva J, et al. Acute CrossFit® workout session impacts blood redox marker modulation. Physiologia. 2021;1(1):1321. doi:10.3390/physiologia1010004

    • Search Google Scholar
    • Export Citation
  • 3.

    Claudino JG, Gabbett TJ, Bourgeois F, et al. CrossFit overview: systematic review and meta-analysis. Sports Med Open. 2018;4(1):11. doi:10.1186/s40798-018-0124-5

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Liguori G, American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription. Lippincott Williams & Wilkins; 2020.

    • Search Google Scholar
    • Export Citation
  • 5.

    Mangine GT, Cebulla B, Feito Y. Normative values for self-reported benchmark workout scores in CrossFit® practitioners. Sports Med Open. 2018;4(1):39. doi:10.1186/s40798-018-0156-x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Butcher SJ, Neyedly TJ, Horvey KJ, Benko CR. Do physiological measures predict selected CrossFit® benchmark performance? Open Access J Sports Med. 2015;6:241247. doi:10.2147/OAJSM.S88265

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Tibana R, Sousa N, Cunha G, et al. Validity of session rating perceived exertion method for quantifying internal training load during high-intensity functional training. Sports. 2018;6(3):68. doi:10.3390/sports6030068

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Leitão L, Dias M, Campos Y, et al. Physical and physiological predictors of FRAN CrossFit® WOD athlete’s performance. Int J Environ Res Public Health. 2021;18(8):4070. doi:10.3390/ijerph18084070

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Dexheimer J, Schroeder E, Sawyer B, Pettitt R, Aguinaldo A, Torrence W. Physiological performance measures as indicators of CrossFit® performance. Sports. 2019;7:93. doi:10.3390/sports7040093

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Chamari K, Padulo J. ‘Aerobic’and ‘Anaerobic’ terms used in exercise physiology: a critical terminology reflection. Sports Med Open. 2015;1(1):9. doi:10.1186/s40798-015-0012-1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Hargreaves M, Spriet L. Skeletal muscle energy metabolism during exercise. Nat Metab. 2020;2:817828. doi:10.1038/s42255-020-0251-4

  • 12.

    Tabata I, Irisawa K, Kouzaki M, Nishimura K, Ogita F, Miyachi M. Metabolic profile of high intensity intermittent exercises. Med Sci Sports Exerc. 1997;29(3):390395. doi:10.1097/00005768-199703000-00015

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Di Prampero P. The energy cost of human locomotion on land and in water. Int J Sports Med. 1986;7(2):5572. doi:10.1055/s-2008-1025736

  • 14.

    Sousa A, Figueiredo P, Zamparo P, Pyne DB, Vilas-Boas JP, Fernandes RJ. Exercise modality effect on bioenergetical performance at V ˙ O 2 max intensity. Med Sci Sports Exerc. 2015;47(8):17051713. doi:10.1249/MSS.0000000000000580

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Zacca R, Azevedo R, Chainok P, et al. Monitoring age-group swimmers over a training macrocycle: energetics, technique, and anthropometrics. J Strength Cond Res. 2020;34(3):818827. doi:10.1519/JSC.0000000000002762

    • Search Google Scholar
    • Export Citation
  • 16.

    Borgonovo-Santos M, Zacca R, Fernandes RJ, Vilas-Boas JP. The impact of a single surfing paddling cycle on fatigue and energy cost. Sci Rep. 2021;11(1):4566. doi:10.1038/s41598-021-83900-y

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Maté-Muñoz JL, Lougedo JH, Barba M, et al. Cardiometabolic and muscular fatigue responses to different CrossFit® workouts. J Sports Sci Med. 2018;17(4):668679. PubMed ID: 30479537

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Timón R, Olcina G, Camacho-Cardeñosa M, Camacho-Cardenosa A, Martinez-Guardado I, Marcos-Serrano M. 48-hour recovery of biochemical parameters and physical performance after two modalities of CrossFit workouts. Biol Sport. 2019;36(3):283289. doi:10.5114/biolsport.2019.85458

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Medbø J, Tabata I. Relative importance of aerobic and anaerobic energy release during short-lasting bicycle exercise. J Appl Physiol. 1989;67:18811886. doi:10.1152/jappl.1989.67.5.1881

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Ma S, Rossiter HB, Barstow TJ, Casaburi R, Porszasz J. Clarifying the equation for modeling of VO2 kinetics above the lactate threshold. J Appl Physiol 2010;109(4):12831284. doi:10.1152/japplphysiol.00459.2010

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Zacca R, Azevedo R, Figueiredo P, et al. VO2FITTING: a free and open-source software for modelling oxygen uptake kinetics in swimming and other exercise modalities. Sports. 2019;7(2):31. doi:10.3390/sports7020031

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Zamparo P, Cortesi M, Gatta G. The energy cost of swimming and its determinants. Eur J Appl Physiol. 2020;120(1):4166. doi:10.1007/s00421-019-04270-y

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Zamparo P, Capelli C, Pendergast D. Energetics of swimming: a historical perspective. Eur J Appl Physiol. 2011;111(3):367378. doi:10.1007/s00421-010-1433-7

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Ratamess NA, Rosenberg JG, Klei S, et al. Comparison of the acute metabolic responses to traditional resistance, body-weight, and battling rope exercises. J Strength Cond Res. 2015;29(1):4757. doi:10.1519/JSC.0000000000000584

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Reis VM, Vianna JM, Barbosa TM, et al. Are wearable heart rate measurements accurate to estimate aerobic energy cost during low-intensity resistance exercise? PLoS One. 2019;14(8):221284. doi:10.1371/journal.pone.0221284

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Linthorne NP. Analysis of standing vertical jumps using a force platform. Am J Phys. 2001;69(11):11981204. doi:10.1119/1.1397460

  • 27.

    Rago V, Brito J, Figueiredo P, et al. Countermovement jump analysis using different portable devices: implications for field testing. Sports. 2018;6(3):91. doi:10.3390/sports6030091

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Smilios I, Häkkinen K, Tokmakidis SP. Power output and electromyographic activity during and after a moderate load muscular endurance session. J Strength Cond Res. 2010;24(8):21222131. doi:10.1519/JSC.0b013e3181a5bc44

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Gastin P. Energy system interaction and relative contribution during maximal exercise. Sports Med Open. 2001;31:725741. doi:10.2165/00007256-200131100-00003

    • Search Google Scholar
    • Export Citation
  • 30.

    Rogatzki MJ, Wright GA, Mikat RP, Brice AG. Blood ammonium and lactate accumulation response to different training protocols using the parallel squat exercise. J Strength Cond Res. 2014;28(4):11131118. doi:10.1519/JSC.0b013e3182a1f84e

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Buitrago S, Wirtz N, Yue Z, Kleinöder H, Mester J. Mechanical load and physiological responses of four different resistance training methods in bench press exercise. J Strength Cond Res. 2013;27(4):10911100. doi:10.1519/JSC.0b013e318260ec77

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Da Silva RL, Brentano MA, Kruel LFM. Effects of different strength training methods on postexercise energetic expenditure. J Strength Cond Res. 2010;24(8):22552260. doi:10.1519/JSC.0b013e3181aff2ba

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Vianna JM, Werneck FZ, Coelho EF, Damasceno VO, Reis VM. Oxygen uptake and heart rate kinetics after different types of resistance exercise. J Hum Kinet. 2014;42:235244. doi:10.2478/hukin-2014-0077

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Sousa Neto IV, Sousa NMF, Neto FR, Falk Neto JH, Tibana RA. Time course of recovery following CrossFit® Karen Benchmark workout in trained men. Front Physiol. 2022;13:899652. doi:10.3389/fphys.2022.899652

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Harris R, Edwards RHT, Hultman E, Nordesjö L, Nylind B, Sahlin K. The time course of phosphocreatine resynthesis during recovery of the quadriceps muscle in man. Pflugers Arch. 1977;367:137142. doi:10.1007/BF00585149

    • Search Google Scholar
    • Export Citation
  • 36.

    Rodrigues-Krause J, Silveira FP, Farinha JB, et al. Cardiorespiratory responses and Energy contribution in Brazilian Jiu-Jitsu exercise sets. Int J Perform. 2020;20(6):10921106. doi:10.1080/24748668.2020.1829429

    • Search Google Scholar
    • Export Citation
  • 37.

    Halson S. Monitoring training load to understand fatigue in athletes. Sports Med. 2014;44(suppl 2):S139S147. doi:10.1007/s40279-014-0253-z

  • 38.

    Shinkle J, Nesser TW, Demchak TJ, McMannus DM. Effect of core strength on the measure of power in the extremities. J Strength Cond Res. 2012;26(2):373380. doi:10.1519/JSC.0b013e31822600e5

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1273 1273 88
Full Text Views 129 129 11
PDF Downloads 88 88 4