Caffeine Enhances 10-km Cycling Performance in Habitual Users Only When Preceded by Caffeine Abstinence

Click name to view affiliation

Timothy D. Griest Human Performance Laboratory, Department of Kinesiology, James Madison University, Harrisonburg, VA, USA

Search for other papers by Timothy D. Griest in
Current site
Google Scholar
PubMed
Close
,
Michael J. Saunders Human Performance Laboratory, Department of Kinesiology, James Madison University, Harrisonburg, VA, USA

Search for other papers by Michael J. Saunders in
Current site
Google Scholar
PubMed
Close
,
Christopher J. Womack Human Performance Laboratory, Department of Kinesiology, James Madison University, Harrisonburg, VA, USA

Search for other papers by Christopher J. Womack in
Current site
Google Scholar
PubMed
Close
, and
Nicholas D. Luden Human Performance Laboratory, Department of Kinesiology, James Madison University, Harrisonburg, VA, USA

Search for other papers by Nicholas D. Luden in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4372-4634 *
Restricted access

Purpose: The primary objective was to assess the performance benefits of caffeine (CAF) supplementation in habitual users. Importantly, this investigation was designed to account for the potential confounding effects of CAF withdrawal (CAFW), which are inherent and common in previous work. Methods: Ten CAF-consuming (394 [146] mg·d−1) recreational cyclists (age 39.1 [14.9] y; maximum oxygen consumption 54.2 [6.2] mL·kg–1·min–1) completed four 10-km time trials (TTs) on a cycle ergometer. On each trial day, 8 hours before reporting to the laboratory, subjects consumed 1.5 mg·kg–1 CAF to prevent withdrawal (no withdrawal [N]) or a placebo (PLA; withdrawal [W]). Then, 1 hour prior to exercise, they received either 6 mg·kg–1 CAF or PLA. These protocols were repeated 4 times, employing all combinations of N/W and CAF/PLA. Results: CAFW did not impair TT power output (PLAW vs PLAN P = .13). However, preexercise CAF only improved TT performance when compared to PLA in the W condition (CAFN vs PLAW P = .008, CAFW vs PLAW P = .04), not when W was mitigated (PLAN vs CAFN P = .33). Conclusions: These data indicate that preexercise CAF only improves recreational cycling performance when compared to bouts preceded by CAF abstinence, suggesting that habitual users may not benefit from 6 mg·kg–1 of CAF and that previous work may have overstated the value of CAF supplementation for habitual users. Future work should examine higher doses of CAF for habitual users.

Luden (ludennd@jmu.edu) is corresponding author, https://orcid.org/0000-0003-4372-4634

  • Collapse
  • Expand
  • 1.

    Guest NS, VanDusseldorp TA, Nelson MT, et al. International society of sports nutrition position stand: caffeine and exercise performance. J Int Soc Sports Nutr. 2021;18(1):1. doi:10.1186/s12970-020-00383-4

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Del Coso J, Muñoz G, Muñoz-Guerra J. Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Appl Physiol Nutr Metabol. 2011;36(4):555561. doi:10.1139/h11-052

    • Search Google Scholar
    • Export Citation
  • 3.

    Nock NL, Marcora SM, Oliveira L, et al. Caffeine supplementation strategies among endurance athletes. Front Sports Act Living. 2022;4:821750. doi:10.3389/fspor.2022.821750

    • Search Google Scholar
    • Export Citation
  • 4.

    Chester N, Wojek N. Caffeine consumption amongst British athletes following changes to the 2004 WADA prohibited list. Int J Sports Med. 2008;29(6):524528. doi:10.1055/s-2007-989231

    • Search Google Scholar
    • Export Citation
  • 5.

    Nikodijević O, Jacobson KA, Daly JW. Locomotor activity in mice during chronic treatment with caffeine and withdrawal. Pharmacol Biochem Behav. 1993;44(1):199216. doi:10.1016/0091-3057(93)90299-9

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Boulenger JP, Patel J, Post RM, Parma AM, Marangos PJ. Chronic caffeine consumption increases the number of brain adenosine receptors. Life Sci. 1983;32(10):11351142. doi:10.1016/0024-3205(83)90119-4

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Davis JM, Zhao Z, Stock HS, Mehl KA, Buggy J, Hand GA. Central nervous system effects of caffeine and adenosine on fatigue. Am J Physiol Regul Integr Comp Physiol. 2003;284(2):R399R404. doi:10.1152/ajpregu.00386.2002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Svenningsson P, Nomikos GG, Fredholm BB. The stimulatory action and the development of tolerance to caffeine is associated with alterations in gene expression in specific brain regions. J Neurosci. 1999;19(10):40114022. doi:10.1523/JNEUROSCI.19-10-04011.1999

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Bell DG, McLellan TM. Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. J Appl Physiol. 2002;93(4):12271234. doi:10.1152/japplphysiol.00187.2002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Beaumont R, Cordery P, Funnell M, Mears S, James L, Watson P. Chronic ingestion of a low dose of caffeine induces tolerance to the performance benefits of caffeine. J Sports Sci. 2017;35(19):19201927. doi:10.1080/02640414.2016.1241421

    • Search Google Scholar
    • Export Citation
  • 11.

    Lara B, Ruiz-Moreno C, Salinero JJ, del Coso J. Time course of tolerance to the performance benefits of caffeine. PLoS One. 2019;14(1):275. doi:10.1371/journal.pone.0210275

    • Search Google Scholar
    • Export Citation
  • 12.

    Evans M, Tierney P, Gray N, Hawe G, Macken M, Egan B. Acute ingestion of caffeinated chewing gum improves repeated sprint performance of team sport athletes with low habitual caffeine consumption. Int J Sport Nutr Exerc Metab. 2018;28(3):217. doi:10.1123/ijsnem.2017-0217

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Sabol F, Grgic J, Mikulic P. The effects of 3 different doses of caffeine on jumping and throwing performance: a randomized, double-blind, crossover study. Int J Sports Physiol Perform. 2019;14(9):884. doi:10.1123/ijspp.2018-0884

    • Search Google Scholar
    • Export Citation
  • 14.

    Gonçalves LS, Painelli VS, Yamaguchi G, et al. Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. J Appl Physiol. 2017;123(1):213220. doi:10.1152/japplphysiol.00260.2017

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Clarke ND, Richardson DL. Habitual caffeine consumption does not affect the ergogenicity of coffee ingestion during a 5 km cycling time trial. Int J Sport Nutr Exerc Metab. 2020;31(1):1320. doi:10.1123/ijsnem.2020-0204

    • Search Google Scholar
    • Export Citation
  • 16.

    Griffiths RR, Woodson PP. Caffeine physical dependence: a review of human and laboratory animal studies. Psychopharmacology. 1988;94(4):437451. doi:10.1007/BF00212836

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    James JE, Rogers PJ. Effects of caffeine on performance and mood: withdrawal reversal is the most plausible explanation. Psychopharmacology. 2005;182(1):6. doi:10.1007/s00213-005-0084-6

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Irwin C, Desbrow B, Ellis A, O’Keeffe B, Grant G, Leveritt M. Caffeine withdrawal and high-intensity endurance cycling performance. J Sports Sci. 2011;29(5):509515. doi:10.1080/02640414.2010.541480

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    van Soeren MH, Graham TE. Effect of caffeine on metabolism, exercise endurance, and catecholamine responses after withdrawal. J Appl Physiol. 1998;85(4):14931501. doi:10.1152/jappl.1998.85.4.1493

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Carvalho A, Marticorena FM, Grecco BH, Barreto G, Saunders B. Can I have my coffee and drink it? A systematic review and meta-analysis to determine whether habitual caffeine consumption affects the ergogenic effect of caffeine. Sports Med. 2022;52(9):22092220. doi:10.1007/s40279-022-01685-0

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Bühler E, Lachenmeier DW, Schlegel K, Winkler G. Development of a tool to assess the caffeine intake among teenagers and young adults. Ernahrungs Umschau. 2013;61(4):5863. doi:10.4455/eu.2014.011

    • Search Google Scholar
    • Export Citation
  • 22.

    Fulgoni VL, Keast DR, Lieberman HR. Trends in intake and sources of caffeine in the diets of US adults: 2001–2010. Am J Clin Nutr. 2015;101(5):10811087. doi:10.3945/ajcn.113.080077

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Griffiths RR, Evans SM, Heishman SJ, et al. Low-dose caffeine physical dependence in humans. J Pharmacol Exp Ther. 1990;255(3):11231132. PubMed ID: 2262896

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Baur DA, Schroer AB, Luden ND, Womack CJ, Smyth SA, Saunders MJ. Glucose–fructose enhances performance versus isocaloric, but not moderate, glucose. Med Sci Sports Exerc. 2014;46(9):17781786. doi:10.1249/MSS.0000000000000284

    • Search Google Scholar
    • Export Citation
  • 25.

    Moseley L, Jeukendrup AE. The reliability of cycling efficiency. Med Sci Sports Exerc. 2001;33(4):621627. doi:10.1097/00005768-200104000-00017

  • 26.

    Juliano LM, Huntley ED, Harrell PT, Westerman AT. Development of the caffeine withdrawal symptom questionnaire: caffeine withdrawal symptoms cluster into 7 factors. Drug Alcohol Depend. 2012;124(3):229234. doi:10.1016/j.drugalcdep.2012.01.009

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Acker-Hewitt TL, Shafer BM, Saunders MJ, Goh Q, Luden ND. Independent and combined effects of carbohydrate and caffeine ingestion on aerobic cycling performance in the fed state. Appl Physiol Nutr Metabol. 2012;37(2):276283. doi:10.1139/h11-160

    • Search Google Scholar
    • Export Citation
  • 28.

    Pataky MW, Womack CJ, Saunders MJ, et al. Caffeine and 3-km cycling performance: effects of mouth rinsing, genotype, and time of day. Scand J Med Sci Sports. 2016;26(6):613619. doi:10.1111/sms.12501

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Borg DN, Osborne JO, Stewart IB, Costello JT, Sims JNL, Minett GM. The reproducibility of 10 and 20 km time trial cycling performance in recreational cyclists, runners and team sport athletes. J Sci Med Sport. 2018;21(8):858863. doi:10.1016/j.jsams.2018.01.004

    • Search Google Scholar
    • Export Citation
  • 30.

    Schroer AB, Saunders MJ, Baur DA, Womack CJ, Luden ND. Cycling time trial performance may be impaired by whey protein and L-alanine intake during prolonged exercise. Int J Sport Nutr Exerc Metab. 2014;24(5):507515. doi:10.1123/ijsnem.2013-0173

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Boyett J, Giersch G, Womack C, et al. Time of day and training status both impact the efficacy of caffeine for short duration cycling performance. Nutrients. 2016;8(10):639. doi:10.3390/nu8100639

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Juliano LM, Griffiths RR. A critical review of caffeine withdrawal: empirical validation of symptoms and signs, incidence, severity, and associated features. Psychopharmacology. 2004;176(1):129. doi:10.1007/s00213-004-2000-x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Juliano LM, Kardel PG, Harrell PT, Muench C, Edwards KC. Investigating the role of expectancy in caffeine withdrawal using the balanced placebo design. Hum Psychopharmacol Clin Exper. 2019;34(2):2692. doi:10.1002/hup.2692

    • Search Google Scholar
    • Export Citation
  • 34.

    Dodd SL, Brooks E, Powers SK, Tulley R. The effects of caffeine on graded exercise performance in caffeine naive versus habituated subjects. Eur J Appl Physiol Occup Physiol. 1991;62(6):424429. doi:10.1007/BF00626615

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Hetzler RK, Warhaftig-Glynn N, Thompson DL, Dowling E, Weltman A. Effects of acute caffeine withdrawal on habituated male runners. J Appl Physiol. 1994;76(3):10431048. doi:10.1152/jappl.1994.76.3.1043

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Bangsbo J, Jacobsen K, Nordberg N, Christensen NJ, Graham T. Acute and habitual caffeine ingestion and metabolic responses to steady-state exercise. J Appl Physiol. 1992;72(4):12971303. doi:10.1152/jappl.1992.72.4.1297

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3138 3138 56
Full Text Views 323 322 50
PDF Downloads 196 196 5