Postactivation Potentiation and the Asynchronous Action of Muscular and Neural Responses

Click name to view affiliation

Anthi Xenofondos Physical Education and Sport Sciences, Frederick University, Nicosia, Cyprus
Faculty of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece

Search for other papers by Anthi Xenofondos in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3315-9865 *
,
Anastasia Papavasileiou Faculty of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece

Search for other papers by Anastasia Papavasileiou in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8529-5482
,
Eleni Bassa Faculty of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece

Search for other papers by Eleni Bassa in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2480-1390
,
Ioannis S. Vrabas Faculty of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece

Search for other papers by Ioannis S. Vrabas in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0009-0007-6007-1643
, and
Dimitrios A. Patikas Faculty of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece

Search for other papers by Dimitrios A. Patikas in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8921-4176
Restricted access

Purpose: This study examined the underlying mechanisms of postactivation potentiation and the time course of muscular- and neural-related variables. Methods: Fourteen trained males executed 4 sets of six 6-second maximum isometric conditioning plantar flexions, with 15 seconds and 2 minutes of interval between the contractions and sets, respectively. Peak twitch torque (TT), rate of torque development, time to peak torque, half relaxation time, and the neural-related variables of H-reflex and electromyogram, normalized to the maximum M-wave (H/M and RMS/M, respectively), were evaluated, as well as the level of the voluntary activation, assessed by the twitch interpolation technique. All neural-related variables were analyzed for the trial within each set when TT was maximal and for the trial within each set when the neural-related variable itself was maximal. Results: Compared with the baseline measures, TT and rate of torque development significantly increased in all sets (P < .001), whereas time to peak torque and half relaxation time significantly decreased in sets 1 to 4 and 2 to 4, respectively (P < .001). However, H/M and the RMS/M did not change for the repetition of each set for which the TT was maximal (P > .05). Interestingly, the within-set maximum H/M ratio of the lateral gastrocnemius muscle revealed a significant increase in all sets (P < .05), compared with the baseline measures. Conclusion: One set of 4 contractions with 6-second duration is sufficient to cause postactivation potentiation for most participants, whereas peak TT augmentation does not coincide with changes in the examined neural-related variables. Further experiments should consider the time lag on their maximal values and their inherent between-participants variability.

  • Collapse
  • Expand
  • 1.

    Sale DG. Postactivation potentiation: role in human performance. Exerc Sport Sci Rev. 2002;30(3):138143. PubMed ID: 12150573 doi:10.1097/00003677-200207000-00008

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Zimmermann HB, Knihs D, Diefenthaeler F, MacIntosh B, Dal Pupo J. Continuous jumps enhance twitch peak torque and sprint performance in highly trained sprint athletes. Int J Sports Physiol Perform. 2021;16(4):565572. PubMed ID: 33440339 doi:10.1123/ijspp.2020-0240

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hamada T, Sale DG, MacDougall JD, Tarnopolsky MA. Postactivation potentiation, fiber type, and twitch contraction time in human knee extensor muscles. J Appl Physiol. 2000;88(6):21312137. PubMed ID: 10846027 doi:10.1152/jappl.2000.88.6.2131

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Xenofondos A, Bassa E, Vrabas IS, Kotzamanidis C, Patikas DA. Muscle twitch torque during two different in volume isometric exercise protocols: fatigue effects on postactivation potentiation. J Strength Cond Res. 2017;32(2):578586. doi:10.1519/JSC.0000000000002311

    • Search Google Scholar
    • Export Citation
  • 5.

    Zehr EP. Considerations for use of the Hoffmann reflex in exercise studies. Eur J Appl Physiol. 2002;86(6):455468. PubMed ID: 11944092 doi:10.1007/s00421-002-0577-5

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Güillich A, Schmidtbleicher D. MVC-induced short-term potentiation of explosive force. New Stud Athl. 1996;11(4):6781.

  • 7.

    Trimble MH, Harp SS. Postexercise potentiation of the H-reflex in humans. Med Sci Sports Exerc. 1998;30(6):933941. PubMed ID: 9624654

  • 8.

    Folland JP, Wakamatsu T, Fimland MS. The influence of maximal isometric activity on twitch and H-reflex potentiation, and quadriceps femoris performance. Eur J Appl Physiol. 2008;104(4):739748. PubMed ID: 18665389 doi:10.1007/s00421-008-0823-6

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Crone C, Nielsen JB. Methodological implications of the post activation depression of the soleus H-reflex in man. Exp Brain Res. 1989;78(1):2832. PubMed ID: 2591515 doi:10.1007/BF00230683

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Xenofondos A, Patikas DA, Koceja DM, et al. Post-activation potentiation: the neural effects of post-activation depression. Muscle Nerve. 2015;52(2):252259. PubMed ID: 25504211 doi:10.1002/mus.24533

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Zero AM, Rice CL. State-of-the-art review: spinal and supraspinal responses to muscle potentiation in humans. Eur J Appl Physiol. 2021;121(5):12711282. PubMed ID: 33635383 doi:10.1007/s00421-021-04610-x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Hodgson MJ, Docherty D, Robbins D. Post-activation potentiation: underlying physiology and implications for motor performance. Sports Med. 2005;35(7):585595. PubMed ID: 16026172 doi:10.2165/00007256-200535070-00004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Vandervoort AA, Quinlan J, McComas AJ. Twitch potentiation after voluntary contraction. Exp Neurol. 1983;81(1):141152. PubMed ID: 6861942 doi:10.1016/0014-4886(83)90163-2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Baudry S, Duchateau J. Postactivation potentiation in human muscle is not related to the type of maximal conditioning contraction. Muscle Nerve. 2004;30(3):328336. PubMed ID: 15318344 doi:10.1002/mus.20101

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Shield A, Zhou S. Assessing voluntary muscle activation with the twitch interpolation technique. Sports Med. 2004;34(4):253267. PubMed ID: 15049717 doi:10.2165/00007256-200434040-00005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Merton PA. Voluntary strength and fatigue. J Physiol Lond. 1954;123(3):553564. PubMed ID: 13152698 doi:10.1113/jphysiol.1954.sp005070

  • 17.

    Cochrane DJ, Stannard SR, Firth EC, Rittweger J. Acute whole-body vibration elicits post-activation potentiation. Eur J Appl Physiol. 2010;108(2):311319. PubMed ID: 19795130 doi:10.1007/s00421-009-1215-2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Froyd C, Beltrami FG, Jensen J, Noakes TD. Potentiation increases peak twitch torque by enhancing rates of torque development and relaxation. J Hum Kinet. 2013;38:8394. PubMed ID: 24235987 doi:10.2478/hukin-2013-0048

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hamada T, Sale DG, MacDougall JD, Tarnopolsky MA. Interaction of fiber type, potentiation and fatigue in human knee extensor muscles. Acta Physiol Scand. 2003;178(2):165173. PubMed ID: 12780391 doi:10.1046/j.1365-201X.2003.01121.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Gago P, Arndt A, Ekblom MM. Post activation potentiation of the plantarflexors: implications of knee angle variations. J Hum Kinet. 2017;57(1):2938. doi:10.1515/hukin-2017-0044

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Palmieri RM, Ingersoll CD, Hoffmann MA. The Hoffmann Reflex: methodologic considerations and applications for use in sports medicine and athletic training research. J Athl Train. 2004;39(3):268277. PubMed ID: 16558683

    • Search Google Scholar
    • Export Citation
  • 22.

    Hermens HJ, Freriks B, Merletti R, et al. European Recommendations for Surface Electromyography. Roessingh Research and Development; 1999.

    • Search Google Scholar
    • Export Citation
  • 23.

    De Luca CJ, Donald Gilmore L, Kuznetsov M, Roy SH. Filtering the surface EMG signal: movement artifact and baseline noise contamination. J Biomech. 2010;43(8):15731579. PubMed ID: 20206934 doi:10.1016/j.jbiomech.2010.01.027

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Haugh L, Ingram O. Statistical Methods for Meta-Analysis. Academic Press; 1985.

  • 25.

    Tornqvist L, Vartia P, Vartia YO. How should relative changes be measured? Am Stat. 1985;39(1):4346. doi:10.2307/2683905

  • 26.

    Hicks AL, Cupido CM, Martin J, Dent J. Twitch potentiation during fatiguing exercise in the elderly: the effects of training. Eur J Appl Physiol Occup Physiol. 1991;63(3–4):278281. PubMed ID: 1761021 doi:10.1007/BF00233862

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Gago P, Arndt A, Tarassova O, Ekblom MM. Post activation potentiation can be induced without impairing tendon stiffness. Eur J Appl Physiol. 2014;114(11):22992308. PubMed ID: 25048072 doi:10.1007/s00421-014-2945-3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Baudry S, Klass M, Duchateau J. Postactivation potentiation influences differently the nonlinear summation of contractions in young and elderly adults. J Appl Physiol. 2005;98(4):12431250. PubMed ID: 15557015 doi:10.1152/japplphysiol.00735.2004

    • Search Google Scholar
    • Export Citation
  • 29.

    Sweeney HL, Bowman BF, Stull JT. Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am J Med. 1993;264(5):C1085C1095. doi:10.1152/ajpcell.1993.264.5.C1085

    • Search Google Scholar
    • Export Citation
  • 30.

    Westerblad H, Lannergren J, Allen DG. Slowed relaxation in fatigued skeletal muscle fibers of Xenopus and Mouse. Contribution of [Ca2+]i and cross-bridges. J Gen Physiol. 1997;109(3):385399. PubMed ID: 9089444 doi:10.1085/jgp.109.3.385

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Ochs RM, Smith JL, Edgerton VR. Fatigue characteristics of human gastrocnemius and soleus muscles. Electromyogr Clin Neurophysiol. 1977;17(3–4):297306. PubMed ID: 923509

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Behm DG, Button DC, Barbour G, Butt JC, Young WB. Conflicting effects of fatigue and potentiation on voluntary force. J Strength Cond Res. 2004;18(2):365372. PubMed ID: 15141999 doi:10.1519/r-12982.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hodgson MJ, Docherty D, Zehr EP. Postactivation potentiation of force is independent of H-reflex excitability. Int J Sports Physiol Perform. 2008;3(2):219231. PubMed ID: 19208930 doi:10.1123/ijspp.3.2.219

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Johnson MA, Polgar J, Weightman D, Appleton D. Data on distribution of fiber types in thirty-six human muscles. J Neurol Sci. 1973;18(1):111129. PubMed ID: 4120482 doi:10.1016/0022-510X(73)90023-3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Boullosa D, Beato M, Dello Iacono A, et al. A new taxonomy for postactivation potentiation in sport. Int J Sports Physiol Perform. 2020;15(8):11971200. PubMed ID: 32820135 doi:10.1123/ijspp.2020-0350

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Blazevich AJ, Babault N. Post-activation potentiation versus post-activation performance enhancement in humans: historical perspective, underlying mechanisms, and current issues. Front Physiol. 2019;10:1359. PubMed ID: 31736781 doi:10.3389/fphys.2019.01359

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Tillin NA, Bishop D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009;39(2):147166. PubMed ID: 19203135 doi:10.2165/00007256-200939020-00004

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1364 1364 58
Full Text Views 282 282 84
PDF Downloads 113 113 4