A Maximal Rowing-Ergometer Protocol to Predict Maximal Oxygen Uptake in Female Rowers

Click name to view affiliation

Oscar B. Mazza Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense M, Denmark

Search for other papers by Oscar B. Mazza in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0009-0002-5840-1600
,
Søren Gam Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense M, Denmark
Department of Diabetes and Endocrinology, University Hospital of Southern Denmark, Esbjerg, Denmark

Search for other papers by Søren Gam in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2461-2824
,
Mikkel E.I. Kolind Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense M, Denmark
Department of Diabetes and Endocrinology, University Hospital of Southern Denmark, Esbjerg, Denmark

Search for other papers by Mikkel E.I. Kolind in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5896-8610
,
Christian Kiær Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense M, Denmark

Search for other papers by Christian Kiær in
Current site
Google Scholar
PubMed
Close
,
Christina Donstrup Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense M, Denmark

Search for other papers by Christina Donstrup in
Current site
Google Scholar
PubMed
Close
, and
Kurt Jensen Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense M, Denmark

Search for other papers by Kurt Jensen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9014-2093 *
Restricted access

Background: Laboratory assessment of maximal oxygen uptake (V˙O2max) is physically and mentally draining for the athlete and requires expensive laboratory equipment. Indirect measurement of V˙O2max could provide a practical alternative to laboratory testing. Purpose: To examine the relationship between the maximal power output (MPO) in an individualized 7 × 2-minute incremental test (INCR-test) and V˙O2max and to develop a regression equation to predict V˙O2max from MPO in female rowers. Methods: Twenty female club and Olympic rowers (development group) performed the INCR-test on a Concept2 rowing ergometer to determine V˙O2max and MPO. A linear regression analysis was used to develop a prediction of V˙O2max from MPO. Cross-validation analysis of the prediction equation was performed using an independent sample of 10 female rowers (validation group). Results: A high correlation coefficient (r = .94) was found between MPO and V˙O2max. The following prediction equation was developed: V˙O2max (mL·min−1) = 9.58 × MPO (W) + 958. No difference was found between the mean predicted V˙O2max in the INCR-test (3480 mL·min−1) and the measured V˙O2max (3530 mL·min−1). The standard error of estimate was 162 mL·min−1, and the percentage standard error of estimate was 4.6%. The prediction model only including MPO, determined during the INCR-test, explained 89% of the variability in V˙O2max. Conclusion: The INCR-test is a practical and accessible alternative to laboratory testing of V˙O2max.

  • Collapse
  • Expand
  • 1.

    Bourdin M, Lacour JR, Imbert C, Messonnier LA. Factors of rowing ergometer performance in high-level female rowers. Int J Sports Med. 2017;38(13):10231028. PubMed ID: 28965342 doi:10.1055/s-0043-118849

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Cosgrove MJ, Wilson J, Watt D, Grant SF. The relationship between selected physiological variables of rowers and rowing performance as determined by a 2000 m ergometer test. J Sports Sci. 1999;17(11):845852. PubMed ID: 10585164 doi:10.1080/026404199365407

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Ingham SA, Whyte GP, Jones K, Nevill AM. Determinants of 2,000 m rowing ergometer performance in elite rowers. Eur J Appl Physiol. 2002;88(3):243246. PubMed ID: 12458367 doi:10.1007/s00421-002-0699-9

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Nevill AM, Allen SV, Ingham SA. Modelling the determinants of 2000 m rowing ergometer performance: a proportional, curvilinear allometric approach. Scand J Med Sci Sports. 2011;21(1):7378. PubMed ID: 19883389 doi:10.1111/j.1600-0838.2009.01025.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Pripstein LP, Rhodes EC, McKenzie DC, Coutts KD. Aerobic and anaerobic energy during a 2-km race simulation in female rowers. Eur J Appl Physiol Occup Physiol. 1999;79(6):491494. PubMed ID: 10344457 doi:10.1007/s004210050542

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Jensen K. Performance assessment In: Secher NH, Volianitis S, eds. Rowing. Blackwell Publishing; 2007:96102.

  • 7.

    Schabort EJ, Hawley JA, Hopkins WG, Blum H. High reliability of performance of well-trained rowers on a rowing ergometer. J Sports Sci. 1999;17(8):627632. PubMed ID: 10487463 doi:10.1080/026404199365650

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Smith TB, Hopkins WG. Measures of rowing performance. Sports Med. 2012;42(4):343358. PubMed ID: 22401296 doi:10.2165/11597230-000000000-00000

  • 9.

    Lakomy HK, Lakomy J. Estimation of maximum oxygen uptake from submaximal exercise on a concept II rowing ergometer. J Sports Sci. 1993;11(3):227232. PubMed ID: 8336354 doi:10.1080/02640419308729989

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Klusiewicz A, Borkowski L, Sitkowski D, Burkhard-Jagodzińska K, Szczepańska B, Ładyga M. Indirect methods of assessing maximal oxygen uptake in rowers: practical implications for evaluating physical fitness in a training cycle. J Hum Kinet. 2016;50(1):187194. PubMed ID: 28149356 doi:10.1515/hukin-2015-0155

    • Search Google Scholar
    • Export Citation
  • 11.

    Kendall KL, Fukuda DH, Smith AE, Cramer JT, Stout JR. Predicting maximal aerobic capacity (VO2max) from the critical velocity test in female collegiate rowers. J Strength Cond Res. 2012;26(3):733738. PubMed ID: 22289694 doi:10.1519/JSC.0b013e318225f3ac

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Huntsman HD, DiPietro L, Drury DG, Miller TA. Development of a rowing-specific VO2max field test. J Strength Cond Res. 2011;25(6):17741779. PubMed ID: 21499139 doi:10.1519/JSC.0b013e3181e4f7a9

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Cherouveim E, Methenitis S, Simeonidis T, et al. Validity and reliability of new equations for the prediction of maximal oxygen uptake in male and female elite adolescent rowers. J Hum Kinet. 2022;83:7786. PubMed ID: 36157964 doi:10.2478/hukin-2022-0053

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Jensen K, Frydkjær M, Jensen NMB, Bannerholt LM, Gam S. A maximal rowing ergometer protocol to predict maximal oxygen uptake. Int J Sports Physiol Perform. 2021;16(3):382386. PubMed ID: 33401243 doi:10.1123/ijspp.2019-0932

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Gore CJ, Tanner RK, Fuller KL, Stanef T. Determination of maximal oxygen consumption (VO2max). In: Gore CJ, Tanner RK, eds. Physiological Tests for Elite Athletes. 2nd ed. Australian Institute of Sport; 2013:103122.

    • Search Google Scholar
    • Export Citation
  • 16.

    Macfarlane DJ. Automated metabolic gas analysis systems: a review. Sports Med. 2001;31(12):841861. PubMed ID: 11665912 doi:10.2165/00007256-200131120-00002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Shephard R. Open-circuit respirometry: a brief historical review of the use of Douglas bags and chemical analyzers. Eur J Appl Physiol. 2017;117(3):381387. doi:10.1007/s00421-017-3556-6

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1062 1062 99
Full Text Views 262 262 76
PDF Downloads 82 82 4