Applicability of the Load–Velocity Relationship to Predict 1-Repetition Maximum in the Half-Squat in High-Level Sprinters

Click name to view affiliation

Rasmus B. Kjær Department of Public Health, Exercise Biology, Aarhus University, Aarhus, Denmark
Danish Athletic Federation, The House of Sport, Brøndby, Denmark

Search for other papers by Rasmus B. Kjær in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4956-0001
,
Jon H. Herskind Department of Public Health, Exercise Biology, Aarhus University, Aarhus, Denmark
Department of Biology, Zoophysiology, Aarhus University, Aarhus, Denmark

Search for other papers by Jon H. Herskind in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1348-5786 *
,
Mathias V. Kristiansen Department of Health Science and Technology, Sport Science—Performance and Technology, Aalborg University, Aalborg, Denmark

Search for other papers by Mathias V. Kristiansen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2372-2543
, and
Lars G. Hvid Department of Public Health, Exercise Biology, Aarhus University, Aarhus, Denmark
The Danish MS Hospitals, Ry and Haslev, Denmark

Search for other papers by Lars G. Hvid in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3233-0429
Restricted access

Purpose: To investigate the indirect measurement of 1-repetition-maximum (1RM) free-weight half-squat in high-level sprinters using the load–velocity relationship. Methods: Half-squat load and velocity data from 11 elite sprinters were collected in 2 separate testing sessions. Approximately 24 hours prior to the first testing session, sprinters completed a fatiguing high-intensity training session consisting of running intervals, staircase exercises, and body-weight exercises. Prior to the second testing session, sprinters had rested at least 48 hours. Two different prediction models (multiple-point method, 2-point method) were used to estimate 1RM based on the load and either mean or peak concentric velocity data of submaximal lifts (40%–90% 1RM). The criterion validity of all methods was examined through intraclass correlation coefficients, coefficient of variation (CV%), Bland–Altman plots, and the SEM. Results: None of the estimations were significantly different from the actual 1RM. The multiple-point method showed higher intraclass correlation coefficients (.91 to .97), with CVs from 3.6% to 11.7% and SEMs from 5.4% to 10.6%. The 2-point method showed slightly lower intraclass correlation coefficients (.76 to .95), with CVs 1.4% to 17.5% and SEMs from 9.8% to 26.1%. Bland–Altman plots revealed a mean random bias in estimation of 1RM for both methods (mean and peak velocity) ranging from 1.06 to 13.79 kg. Conclusion: Velocity-based methods can be used to roughly estimate 1RM in elite sprinters in the rested and fatigued conditions. However, all methods showed variations that limit their applicability for accurate load prescription for individual athletes.

Supplementary Materials

    • Supplementary Material S1 (xlsx 174 KB)
    • Supplementary Material S2 (pdf 382 KB)
  • Collapse
  • Expand
  • 1.

    Ratamess NA, Alvar BA, Evetoch TK, et al. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687708. doi:10.1249/MSS.0b013e3181915670

    • Search Google Scholar
    • Export Citation
  • 2.

    Reynolds JM, Gordon TJ, Robergs RA. Prediction of one repetition maximum strength from multiple repetition maximum testing and anthropometry. J Strength Cond Res. 2006;20(3):584592. doi:10.1519/R-15304.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Jidovtseff B, Harris NK, Crielaard JM, Cronin JB. Using the load-velocity relationship for 1RM prediction. J Strength Cond Res. 2011;25(1):267270. doi:10.1519/JSC.0b013e3181b62c5f

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Picerno P, Iannetta D, Comotto S, et al. 1RM prediction: a novel methodology based on the force–velocity and load–velocity relationships. Eur J Appl Physiol. 2016;116(10):20352043. doi:10.1007/s00421-016-3457-0

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bazuelo-Ruiz B, Padial P, García-Ramos A, Morales-Artacho AJ, Miranda MT, Feriche B. Predicting maximal dynamic strength from the load-velocity relationship in squat exercise. J Strength Cond Res. 2015;29(7):19992005. doi:10.1519/JSC.0000000000000821

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Pérez-Castilla A, García-Ramos A, Padial P, Morales-Artacho AJ, Feriche B. Load-velocity relationship in variations of the half-squat exercise. J Strength Cond Res. 2018;37:2072. doi:10.1519/jsc.0000000000002072

    • Search Google Scholar
    • Export Citation
  • 7.

    Pérez-Castilla A, Ramirez-Campillo R, Fernandes JFT, García-Ramos A. Feasibility of the 2-point method to determine the load−velocity relationship variables during the countermovement jump exercise. J Sport Heal Sci. 2021 Nov 28:S2095–2546(21)00126-5. doi:10.1016/j.jshs.2021.11.003

    • Search Google Scholar
    • Export Citation
  • 8.

    Conceição F, Fernandes J, Lewis M, Gonzaléz-Badillo JJ, Jimenéz-Reyes P. Movement velocity as a measure of exercise intensity in three lower limb exercises. J Sports Sci. 2016;34(12):10991106. doi:10.1080/02640414.2015.1090010

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Garcia-Ramos A, Jaric S. Two-point method: a quick and fatigue-free procedure for assessment of muscle mechanical capacities and the 1 repetition maximum. Strength Cond J. 2018;40(2):5466. doi:10.1519/ssc.0000000000000359

    • Search Google Scholar
    • Export Citation
  • 10.

    Hughes JL, Banyard GH, Dempsey RA, Peiffer JJ, Scott RB. Using load-velocity relationships to quantify training-induced fatigue. J Strength Cond Res. 2019;(33):762773. doi:10.1519/JSC.0000000000003007

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    García-Ramos A, Pestaña-Melero F, Pérez-Castilla A, Rojas FJ, Haff GG. Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability. J Strength Cond Res. 2018;32(5):12731279. doi:10.1519/JSC.0000000000001998

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Mcburnie AJ, Allen KP, Garry M, Martin M. The benefits and limitations of predicting one repetition maximum using the load-velocity relationship. Strength Cond J. 2019;41:496. doi:10.1519/SSC.0000000000000496

    • Search Google Scholar
    • Export Citation
  • 13.

    Loturco I, Pereira L, Abad CC, et al. Using bar velocity to predict the maximum dynamic strength in the half-squat exercise. Int J Sports Physiol Perform. 2016;11(5):697700. doi:10.1123/ijspp.2015-0316

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Schwanbeck S, Chilibeck PD, Binsted G. A comparison of free weight squat to Smith machine squat using electromyography. J Strength Cond Res. 2009;23(9):25882591. doi:10.1519/JSC.0b013e3181b1b181

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Kristiansen M, Rasmussen GHF, Sloth ME, Voigt M. Inter- and intra-individual variability in the kinematics of the back squat. Hum Mov Sci. 2019;67:102510. doi:10.1016/j.humov.2019.102510

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Pérez-Castilla A, Jukic I, García-Ramos A. Validation of a novel method to assess maximal neuromuscular capacities through the load-velocity relationship. J Biomech. 2021;127:1417. doi:10.1016/j.jbiomech.2021.110684

    • Search Google Scholar
    • Export Citation
  • 17.

    Tzatzakis T, Papanikolaou K, Draganidis D, et al. Recovery kinetics after speed-endurance training in male soccer players. Int J Sports Physiol Perform. 2020;1:395408. doi:10.1123/ijspp.2018-0984

    • Search Google Scholar
    • Export Citation
  • 18.

    García-Ramos A, Torrejón A, Feriche B, et al. Selective effects of different fatigue protocols on the function of upper body muscles assessed through the force–velocity relationship. Eur J Appl Physiol. 2018;118(2):439447. doi:10.1007/s00421-017-3786-7

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Lee KA, Hicks G, Nino-Murcia G. Validity and reliability of a scale to assess fatigue. Psychiatry Res. 1991;36(3):291298. doi:10.1016/0165-1781(91)90027-M

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26(4):217238. doi:10.2165/00007256-199826040-00002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420428. doi:10.1037/0033-2909.86.2.420

  • 22.

    Hughes LJ, Peiffer JJ, Scott BR. Load–velocity relationship 1RM predictions: a comparison of Smith machine and free-weight exercise. J Sports Sci. 2020;38(22):4235. doi:10.1080/02640414.2020.1794235

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Banyard HG, Nosaka K, Haff GG. Reliability and validity of the load-velocity relationship to predict the 1RM back squat. J Strength Cond Res. 2017;31(7):18971904. doi:10.1519/JSC.0000000000001657

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Wirth K, Keiner M, Hartmann H, Sander A, Mickel C. Effect of 8 weeks of free-weight and machine-based strength training on strength and power performance. J Hum Kinet. 2016;53(1):201210. doi:10.1515/hukin-2016-0023

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hughes L, Banyard H, Dempsey A, Scott B. Using a load-velocity relationship to predict one repetition maximum in free-weight exercise: a comparison of the different methods. J Strength Cond Res. 2019;33(9):24092419. doi:10.1519/JSC.0000000000002550

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Jovanović M, Flanagan EP. Researched applications of velocity based strength training. J Aust Strength Cond. 2014;22:5869.

  • 27.

    Thompson SW, Rogerson D, Ruddock A, Greig L, Dorrell HF, Barnes A. A novel approach to 1rm prediction using the load-velocity profile: a comparison of models. Sports. 2021;9(7):88. doi:10.3390/sports9070088

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    García-Ramos A. Optimal minimum velocity threshold to estimate the 1-repetition maximum: the case of the Smith machine bench press exercise. Int J Sports Physiol Perform. 2023;18(4):393401. doi:10.1123/ijspp.2022-0355

    • Search Google Scholar
    • Export Citation
  • 29.

    Çetin O, Akyildiz Z, Demirtaş B, et al. Reliability and validity of the multi-point method and the 2-point method’s variations of estimating the one-repetition maximum for deadlift and back squat exercises. PeerJ. 2022;10:e13013. doi:10.7717/peerj.13013

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1278 1277 53
Full Text Views 255 255 78
PDF Downloads 94 94 2