Enhancing the Initial Acceleration Performance of Elite Rugby Backs. Part I: Determining Individual Technical Needs

Click name to view affiliation

James J. Wild School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom

Search for other papers by James J. Wild in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7762-4768 *
,
Ian N. Bezodis Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom

Search for other papers by Ian N. Bezodis in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0250-032X
,
Jamie S. North Research Center for Applied Performance Sciences, Faculty of Sport, Allied Health and Performance Sciences, St Mary’s University, Twickenham, United Kingdom

Search for other papers by Jamie S. North in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2429-4552
, and
Neil E. Bezodis Applied Sports, Technology, Exercise and Medicine Research Center, Swansea University, Swansea, United Kingdom

Search for other papers by Neil E. Bezodis in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2229-3310
Restricted access

Purpose: This study sought to quantify the within-individual relationships between spatiotemporal variables and initial acceleration sprint performance in elite rugby backs and to establish a normative data set of relevant strength-based measures. Methods: First, the spatiotemporal variables, ratios of step length to step rate and of contact time to flight time, and initial acceleration performance were obtained from 35 elite male rugby backs (mean [SD] age 25 [3] y) over the first 4 steps of 3 sprints. Angular and linear kinematic aspects of technique and strength-based qualities were collected from 25 of these participants. Second, the same spatiotemporal variables were collected from 19 of the participants on 3 further occasions (12 trials in total) to determine the within-individual associations of these variables and initial acceleration performance. Results: Moderate to very large meaningful within-individual relationships (|r| = .43–.88) were found between spatiotemporal variables and initial acceleration performance in 17 of the 19 participants. From these relationships, a theoretically “desirable” change in whole-body kinematic strategy was individually determined for each participant, and normative strength-based measures to contextualize these were established. Conclusions: Meaningful within-individual relationships are evident between sprint spatiotemporal variables and initial acceleration performance in elite rugby backs. Individualized approaches are therefore necessary to understand how aspects of technique relate to initial acceleration performance. This study provides an objective, evidence-based approach for applied practitioners to identify the initial acceleration technical needs of individual rugby backs.

Supplementary Materials

    • Supplementary Material S1 (PDF 30 KB)
    • Supplementary Material S2 (PDF 1 MB)
    • Supplementary Material S3 (PDF 197 KB)
  • Collapse
  • Expand
  • 1.

    Cunningham D, Shearer D, Drawer S, et al. Relationships between physical qualities and key performance indicators during match-play in senior international rugby union players. PLoS One. 2018;13(9):e0202811. doi:10.1371/journal.pone.0202811

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Hamlin M, Deuchrass R, Elliot C, Manimmanakorn N. Short and long-term differences in anthropometric characteristics and physical performance between male rugby players that became professional or remained amateur. J Exerc Sci Fitness. 2021;19(3):143149. doi:10.1016/j.jesf.2021.01.002

    • Search Google Scholar
    • Export Citation
  • 3.

    Smart D, Hopkins WG, Quarrie KL, Gill N. The relationship between physical fitness and game behaviours in rugby union players. Eur J Sport Sci. 2014;14(suppl 1):812. doi:10.1080/17461391.2011.635812

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Lees A. Technique analysis in sports: a critical review. J Sports Sci. 2002;20(10):813828. doi:10.1080/026404102320675657

  • 5.

    Nagahara R, Matsubayashi T, Matsuo A, Zushi K. Kinematics of transition during human accelerated sprinting. Biol Open. 2014;3(8):689699. doi:10.1242/bio.20148284

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Debaere S, Delecluse C, Aerenhouts D, Hagman F, Jonkers I. From block clearance to sprint running: characteristics underlying an effective transition. J Sports Sci. 2013;31(2):137149. doi:10.1080/02640414.2012.722225

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Lockie R, Murphy A, Schultz A, Jeffriess M, Callaghan S. Influence of sprint acceleration stance kinetics on velocity and step kinematics in field sport athletes. J Strength Cond Res. 2013;27(9):24942503. doi:10.1519/JSC.0b013e31827f5103

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Nagahara R, Naito H, Morin JB, Zushi K. Association of acceleration with spatiotemporal variables in maximal sprinting. Int J Sports Med. 2014;35(9):755761. doi:10.1055/s-0033-1363252

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Rabita G, Dorel S, Slawinski J, et al. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports. 2015;25(5):583594. doi:10.1111/sms.12389

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Wild J, Bezodis I, North J, Bezodis N. Differences in step characteristics and linear kinematics between rugby players and sprinters during initial sprint acceleration. Eur J Sport Sci. 2018;18(10):13271337. doi:10.1080/17461391.2018.1490459

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Wild J, Bezodis I, North J, Bezodis N. Characterising initial sprint acceleration strategies using a whole-body kinematics approach. J Sports Sci. 2022;40(2):203214. doi:10.1080/02640414.2021.1985759

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Salo A, Bezodis I, Batterham A, Kerwin D. Elite sprinting: are athletes individually step-frequency or step-length reliant? Med Sci Sports Exerc. 2011;43(6):1055. doi:10.1249/MSS.0b013e318201f6f8

    • Search Google Scholar
    • Export Citation
  • 13.

    Holt K. Constraints in the emergence of preferred locomotory patterns. In: Rosenbaum D, Collyer C, eds. Timing of Behavior: Neural, Psychological and Computational Perspectives. MIT Press Ltd; 1998:261292.

    • Search Google Scholar
    • Export Citation
  • 14.

    Thelen E. Time-scale dynamics and the development of an embodied cognition. In: Port R, van Gelder T, eds. Explorations in the Dynamics of Cognition: Mind as Motion. The MIT Press; 1995:69100. doi:10.7551/mitpress/4622.003.0004

    • Search Google Scholar
    • Export Citation
  • 15.

    Wild JJ, Bezodis IN, North JS, Bezodis NE. Enhancing the initial acceleration performance of elite rugby backs. Part II: insights from multiple longitudinal individual-specific case study interventions. Int J Sports Physiol Perform. 2023;18(9). doi:10.1123/IJSPP.2023-0091.

    • Search Google Scholar
    • Export Citation
  • 16.

    Bezodis N, Willwacher S, Salo A. The biomechanics of the track and field sprint start: a narrative review. Sports Med. 2019;49(9):13451364. doi:10.1007/s40279-019-01138-1

    • Search Google Scholar
    • Export Citation
  • 17.

    McKay A, Stellingwerff T, Smith E, et al. Defining training and performance caliber: a participant classification framework. Int J Sports Physiol Perf. 2022;17(2):317331. doi:10.1123/ijspp.2021-0451

    • Search Google Scholar
    • Export Citation
  • 18.

    Healy R, Norris M, Kenny I, Harrison A. A novel protocol to measure short sprint performance. Proc Eng. 2016;147:706711. doi:10.1016/j.proeng.2016.06.252

    • Search Google Scholar
    • Export Citation
  • 19.

    Chelly MS, Chérif N, Amar MB, et al. Relationships of peak leg power, 1 maximal repetition half back squat, and leg muscle volume to 5-m sprint performance of junior soccer players. J Strength Cond Res. 2010;24(1):266271. doi:10.1519/JSC.0b013e3181c3b298

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Zabaloy S, Pareja Blancoc F, Carlos-Vivas J, Gálvez González J. Determinant factors of physical performance in rugby specific playing positions. Sci Sports. 2021;36(4):308.e1308.e10. doi:10.1016/j.scispo.2020.06.011

    • Search Google Scholar
    • Export Citation
  • 21.

    Flanagan E, Ebben W, Jensen R. Reliability of the reactive strength index and time to stabilization during depth jumps. J Strength Cond Res. 2008;22(5):16771682. doi:10.1519/JSC.0b013e318182034b

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Flanagan EP, Comyns TM. The use of contact time and the reactive strength index to optimize fast stretch-shortening cycle training. Strength Cond J. 2008;30(5):3238. doi:10.1519/SSC.0b013e318187e25b

    • Search Google Scholar
    • Export Citation
  • 23.

    Comyns T, Flanagan E, Fleming S, Fitzgerald E, Harper D. Interday reliability and usefulness of a reactive strength index derived from 2 maximal rebound jump tests. Int J Sports Physiol Perform. 2019;14(9):12001204. doi:10.1123/ijspp.2018-0829

    • Search Google Scholar
    • Export Citation
  • 24.

    Samozino P, Edouard P, Sangnier S, Brughelli M, Gimenez P, Morin J-B. Force-velocity profile: imbalance determination and effect on lower limb ballistic performance. Int J Sports Med. 2013;35(6):505510. doi:10.1055/s-0033-1354382

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Goodwin J, Bull AM. Novel assessment of isometric hip extensor function: reliability, joint angle sensitivity, and concurrent validity. J Strength Cond Res. 2022;36:27622770. doi:10.1519/JSC.0000000000004012

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hopkins W. A spreadsheet for deriving a confidence interval, mechanistic inference and clinical inference from a P value. Sportscience. 2007;11:1620.

    • Search Google Scholar
    • Export Citation
  • 27.

    Hopkins W. A scale of magnitudes for effect statistics. Sportscience. 2002. https://www.sportsci.org/resource/stats/effectmag.html

  • 28.

    Hof AL. Scaling gait data to body size. Gait Posture. 1996;4(3):222223. doi:10.1016/0966-6362(95)01057-2

  • 29.

    Bezodis N, Salo A, Trewartha G. Choice of sprint start performance measure affects the performance-based ranking within a group of sprinters: which is the most appropriate measure? Sports Biomech. 2010;9(4):258269. doi:10.1080/14763141.2010.538713

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26(4):217238. doi:10.2165/00007256-199826040-00002

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1424 1424 65
Full Text Views 309 309 34
PDF Downloads 189 189 0