Enhancing the Initial Acceleration Performance of Elite Rugby Backs. Part II: Insights From Multiple Longitudinal Individual-Specific Case-Study Interventions

Click name to view affiliation

James J. Wild School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom

Search for other papers by James J. Wild in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7762-4768 *
,
Ian N. Bezodis Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom

Search for other papers by Ian N. Bezodis in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0250-032X
,
Jamie S. North Research Centre for Applied Performance Sciences, Faculty of Sport, Allied Health and Performance Sciences, St Mary’s University, Twickenham, United Kingdom

Search for other papers by Jamie S. North in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2429-4552
, and
Neil E. Bezodis Applied Sports, Technology, Exercise and Medicine Research Centre, Swansea University, Swansea, United Kingdom

Search for other papers by Neil E. Bezodis in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2229-3310
Restricted access

Purpose: This study implemented 18-week individual-specific sprint acceleration training interventions in elite male rugby backs based on their predetermined individual technical needs and evaluated the effectiveness of these interventions. Methods: Individual-specific interventions were prescribed to 5 elite rugby backs over an 18-week period. Interventions were informed by the relationships between individual technique strategies and initial acceleration performance, and their strength-based capabilities. Individual-specific changes in technique and initial acceleration performance were measured at multiple time points across the intervention period and compared with 3 control participants who underwent their normal training. Results: Of the technique variables intentionally targeted during the intervention period, moderate to very large (|d| = 0.93–3.99) meaningful changes were observed in the participants who received an individual-specific intervention but not in control participants. Resultant changes to the intervention participants’ whole-body kinematic strategies were broadly consistent with the intended changes. Moderate to very large (|d| = 1.11–2.82) improvements in initial acceleration performance were observed in participants receiving individual-specific technical interventions but not in the control participants or the participant who received an individual-specific strength intervention. Conclusions: Individual-specific technical interventions were more effective in manipulating aspects of acceleration technique and performance compared with the traditional “one-size-fits-all” approach adopted by the control participants. This study provides a novel, evidence-based approach for applied practitioners working to individualize sprint-based practices to enhance acceleration performance.

Supplementary Materials

    • Supplementary Material S1 (PDF 789 KB)
    • Supplementary Material S2 (PDF 28 KB)
    • Supplementary Material S3 (PDF 1 MB)
  • Collapse
  • Expand
  • 1.

    Jeffreys I, Moody J. Strength and Conditioning for Sports Performance. Taylor & Francis Group; 2021.

  • 2.

    Joyce D, Lewindon D. High-performance training for sports. Human Kinetics; 2021.

  • 3.

    Nicholson B, Dinsdale A, Jones B, Till K. The training of short distance sprint performance in football code athletes: a systematic review and meta-analysis. Sports Med. 2021;51(6):11791207. PubMed ID: 33245512 doi:10.1007/s40279-020-01372-y

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Newell K. Constraints on the development of coordination. In: Wade M, Whiting H, eds. Motor Development in Children: Aspects of Coordination. Martinus Nijhoff Publishers; 1986:341361.

    • Search Google Scholar
    • Export Citation
  • 5.

    Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports Exerc. 2001;33(suppl 1):S446S451. doi:10.1097/00005768-200106001-00013.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Pickering C, Kiely J. The development of a personalised training framework: implementation of emerging technologies for performance. J Funct Morphol Kinesiol. 2019;4(2):25. PubMed ID: 33467340 doi:10.3390/jfmk4020025

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Wild JJ, Bezodis IN, North JS, Bezodis NE. Enhancing the initial acceleration performance of elite rugby backs. Part I: determining individual technical needs. Int J Sports Perform Physiol. 2023;18(9). doi:10.1123/ijspp.2023-0090

    • Search Google Scholar
    • Export Citation
  • 8.

    Wild J, Bezodis I, North J, Bezodis N. Characterising initial sprint acceleration strategies using a whole-body kinematics approach. J Sports Sci. 2022;40(2):203214. PubMed ID: 34612166 doi:10.1080/02640414.2021.1985759

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Salo A, Bezodis I, Batterham A, Kerwin D. Elite sprinting: are athletes individually step-frequency or step-length reliant? Med Sci Sports Exerc. 2011;43(6):1055. PubMed ID: 20980924 doi:10.1249/MSS.0b013e318201f6f8

    • Search Google Scholar
    • Export Citation
  • 10.

    Lahti J, Huuhka T, Romero V, Bezodis I, Morin J, Häkkinen K. Changes in sprint performance and sagittal plane kinematics after heavy resisted sprint training in professional soccer players. PeerJ. 2020;8:e10507. doi:10.7717/peerj.10507

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Lockie R, Murphy A, Callaghan S, Jeffriess M. Effects of sprint and plyometrics training on field sport acceleration technique. J Strength Cond Res. 2014;28(7):17901801. PubMed ID: 24149762 doi:10.1519/JSC.0000000000000297

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Mendiguchia J, Castaño A, Jimenez-Reyes P, et al. Can we modify maximal speed running posture? Implications for performance and hamstring injuries management. Int J Sports Physiol Perform. 2022;17(3):374383. PubMed ID: 34794121 doi:10.1123/ijspp.2021-0107

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Halperin I, Vigotsky A, Foster C, Pyne D. Strengthening the practice of exercise and sport-science research. Int J Sports Physiol Perform. 2018;13(2):19. doi:10.1123/ijspp.2017-0185

    • Search Google Scholar
    • Export Citation
  • 14.

    McKay A, Stellingwerff T, Smith E, et al. Defining training and performance caliber: a participant classification framework. Int J Sports Physiol Perform. 2022;17(2):317331. doi:10.1123/ijspp.2021-0451

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Abedanzadeh R, Becker K, Mousavi S. Both a holistic and external focus of attention enhance the learning of a badminton short serve. Psychol Res. 2022;86(1):141149. doi:10.1007/s00426-021-01475-9

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Winkelman N. Attentional focus and cueing for speed development. Strength Cond J. 2018;40(1):1325. doi:10.1519/SSC.0000000000000266

  • 17.

    Kubo K, Ishigaki T, Ikebukuro T. Effects of plyometric and isometric training on muscle and tendon stiffness in vivo. Physiol Rep. 2017;5(15):e13374. doi:10.14814/phy2.13374

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Lum D, Barbosa T, Joseph R, Balasekaran G. Effects of two isometric strength training methods on jump and sprint performances: a randomized controlled trial. J Sci Sport Exerc. 2021;3(2):115124. doi:10.1007/s42978-020-00095-w

    • Search Google Scholar
    • Export Citation
  • 19.

    Kubo K, Yata H, Kanehisa H, Fukunaga T. Effects of isometric squat training on the tendon stiffness and jump performance. Eur J Appl Physiol. 2006;96(3):305314. doi:10.1007/s00421-005-0087-3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Brazil A, Needham L, Palmer J, Bezodis I. A comprehensive biomechanical analysis of the barbell hip thrust. PLoS One. 2021;16(3):e0249307. PubMed ID: 33780488 doi:10.1371/journal.pone.0249307

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Androulakis-Korakakis P, Fisher J, Steele J. The minimum effective training dose required to increase 1RM strength in resistance-trained men: a systematic review and meta-analysis. Sports Med. 2020;50(4):751765. PubMed ID: 31797219 doi:10.1007/s40279-019-01236-0

    • Search Google Scholar
    • Export Citation
  • 22.

    O’Connor F, Thornton H, Ritchie D, et al. Greater association of relative thresholds than absolute thresholds with noncontact lower-body injury in professional Australian rules footballers: implications for sprint monitoring. Int J Sports Physiol Perform. 2020;15(2):204212. PubMed ID: 31094252 doi:10.1123/ijspp.2019-0015

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Lyndon H. I did it my way! An introduction to “old way/new way” methodology. Aust J Spec Educ. 1989;13(1):3237. doi:10.1080/1030011890130107

    • Search Google Scholar
    • Export Citation
  • 24.

    Hopkins W. A Scale of Magnitudes for Effect Statistics. Sportscience. Updated 2002. http://www.sportsci.org/resource/stats/effectmag.html

    • Search Google Scholar
    • Export Citation
  • 25.

    Turner A, Parmar N, Jovanovski A, Hearne G. Assessing group-based changes in high-performance sport. Part 2. Strength Cond J. 2021;43(4):6877. doi:10.1519/SSC.0000000000000613

    • Search Google Scholar
    • Export Citation
  • 26.

    Friedman J, Rafsky L. Multivariate generalizations of the Wald-Wolfowitz and Smirnov two-sample tests. Ann Statist. 1979;7(4):697717. doi:10.1214/aos/1176344722

    • Search Google Scholar
    • Export Citation
  • 27.

    Rahmatallah Y, Zybailov B, Emmert-Streib F, Glazko G. GSAR: bioconductor package for gene set analysis in R. BMC Bioinf. 2017;18(1):61. doi:10.1186/s12859-017-1482-6

    • Search Google Scholar
    • Export Citation
  • 28.

    Diedrichsen J, White O, Newman D, Lally N. Use-dependent and error-based learning of motor behaviors. J Neurosci. 2010;30(15):51595166. PubMed ID: 20392938 doi:10.1523/JNEUROSCI.5406-09.2010

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Mawase F, Uehara S, Bastian A, Celnik P. Motor learning enhances use-dependent plasticity. J Neurosci. 2017;37(10):26732685. doi:10.1523/JNEUROSCI.3303-16.2017

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Saltzman E, Kelso J. Skilled actions: a task-dynamic approach. Psychol Rev. 1987;94(1):84106. PubMed ID: 3823306 doi:10.1037/0033-295X.94.1.84

  • 31.

    Jacobs R, van Ingen Schenau G. Intermuscular coordination in a sprint push-off. J Biomech. 1992;25(9):953965. PubMed ID: 1517272 doi:10.1016/0021-9290(92)90031-U

    • Search Google Scholar
    • Export Citation
  • 32.

    Haugen T, Seiler S, Sandbakk Ø, Tønnessen E. The training and development of elite sprint performance: an integration of scientific and best practice literature. Sports Med. 2019;5(1):116. doi:10.1186/s40798-019-0221-0

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1484 1484 88
Full Text Views 291 291 21
PDF Downloads 203 203 1