Hematological Adaptations Following a Training Camp in Hot and/or Hypoxic Conditions in Elite Rugby Union Players

Click name to view affiliation

Julien D. Périard Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
Department of Research and Scientific Support, Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar

Search for other papers by Julien D. Périard in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6266-4246 *
,
Olivier Girard Department of Research and Scientific Support, Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar
School of Human Sciences (Exercise and Sport Science), University of Western Australia, Crawley, WA, Australia

Search for other papers by Olivier Girard in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4797-182X
,
Nathan Townsend Department of Research and Scientific Support, Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar
College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar

Search for other papers by Nathan Townsend in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2328-4638
,
Pitre Bourdon Department of Sport Science, ASPIRE, Academy for Sports Excellence, Doha, Qatar
Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, SA, Australia

Search for other papers by Pitre Bourdon in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7907-3752
,
Scott Cocking Department of Research and Scientific Support, Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar
Department of Sport Science, ASPIRE, Academy for Sports Excellence, Doha, Qatar

Search for other papers by Scott Cocking in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4669-6595
,
Mohammed Ihsan Department of Research and Scientific Support, Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar

Search for other papers by Mohammed Ihsan in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0349-5558
,
Mathieu Lacome Department of Research, Sport Laboratory, Expertise and Performance, French Institute of Sports (INSEP), Paris, France
Department of Performance and Analytics, Parma Calcio, Parma, Italy

Search for other papers by Mathieu Lacome in
Current site
Google Scholar
PubMed
Close
,
David Nichols Department of Research and Scientific Support, Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar

Search for other papers by David Nichols in
Current site
Google Scholar
PubMed
Close
,
Gavin Travers Department of Research and Scientific Support, Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar
Space Medicine Team, European Astronaut Center, Köln, Germany

Search for other papers by Gavin Travers in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4554-6520
,
Mathew G. Wilson Department of Research and Scientific Support, Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar
Institute of Sport, Exercise and Health, University College London, London, United Kingdom

Search for other papers by Mathew G. Wilson in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6317-0168
,
Julien Piscione Department of Research, Sport Laboratory, Expertise and Performance, French Institute of Sports (INSEP), Paris, France

Search for other papers by Julien Piscione in
Current site
Google Scholar
PubMed
Close
, and
Sebastien Racinais Department of Research and Scientific Support, Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar
Department of Research, Sport Laboratory, Expertise and Performance, French Institute of Sports (INSEP), Paris, France

Search for other papers by Sebastien Racinais in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0348-4744
Restricted access

Purpose: To investigate the effects of a training camp with heat and/or hypoxia sessions on hematological and thermoregulatory adaptations. Methods: Fifty-six elite male rugby players completed a 2-week training camp with 5 endurance and 5 repeated-sprint sessions, rugby practice, and resistance training. Players were separated into 4 groups: CAMP trained in temperate conditions at sea level, HEAT performed the endurance sessions in the heat, ALTI slept and performed the repeated sprints at altitude, and H + A was a combination of the heat and altitude groups. Results: Blood volume across all groups increased by 140 mL (95%CI, 42–237; P = .006) and plasma volume by 97 mL (95%CI 28–167; P = .007) following the training camp. Plasma volume was 6.3% (0.3% to 12.4%) higher in HEAT than ALTI (P = .034) and slightly higher in HEAT than H + A (5.6% [−0.3% to 11.7%]; P = .076). Changes in hemoglobin mass were not significant (P = .176), despite a ∼1.2% increase in ALTI and H + A and a ∼0.7% decrease in CAMP and HEAT. Peak rectal temperature was lower during a postcamp heat-response test in HEAT (0.3 °C [0.1–0.5]; P = .010) and H + A (0.3 °C [0.1–0.6]; P = .005). Oxygen saturation upon waking was lower in ALTI (3% [2% to 5%]; P < .001) and H + A (4% [3% to 6%]; P < .001) than CAMP and HEAT. Conclusion: Although blood and plasma volume increased following the camp, sleeping at altitude impeded the increase when training in the heat and only marginally increased hemoglobin mass. Heat training induced adaptations commensurate with partial heat acclimation; however, combining heat training and altitude training and confinement during a training camp did not confer concomitant hematological adaptations.

  • Collapse
  • Expand
  • 1.

    Saunders PU, Garvican-Lewis LA, Chapman RF, et al. Special environments: altitude and heat. Int J Sport Nutr Exerc Metab. 2019;29(2):210219. doi:10.1123/ijsnem.2018-0256

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Périard JD, Eijsvogels TMH, Daanen HAM. Exercise under heat stress: thermoregulation, hydration, performance implications and mitigation strategies. Physiol Rev. 2021;101(4):18731979. doi:10.1152/physrev.00038.2020

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Saunders PU, Pyne DB, Gore CJ. Endurance training at altitude. High Altitude Med and Bio. 2009;10(2):135148. doi:10.1089/ham.2008.1092

    • Search Google Scholar
    • Export Citation
  • 4.

    Gore CJ, Clark SA, Saunders PU. Nonhematological mechanisms of improved sea-level performance after hypoxic exposure. Med Sci Sports Exerc. 2007;39(9):16001609. doi:10.1249/mss.0b013e3180de49d3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    McCleave EL, Slattery KM, Duffield R, et al. Impaired heat adaptation from combined heat training and live high-train low hypoxia. Int J Sports Physiol Perform. 2019;14(5):635643. doi:10.1123/ijspp.2018-0399

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    McCleave EL, Slattery KM, Duffield R, et al. Temperate performance benefits after heat, but not combined heat and hypoxic training. Med Sci Sports Exerc. 2017;49(3):509517. doi:10.1249/MSS.0000000000001138

    • Search Google Scholar
    • Export Citation
  • 7.

    Buchheit M, Racinais S, Bilsborough J, et al. Adding heat to the live-high train-low altitude model: a practical insight from professional football. Br J Sports Med. 2013;47(suppl 1):i59i69. doi:10.1136/bjsports-2013-092559

    • Search Google Scholar
    • Export Citation
  • 8.

    Rendell RA, Prout J, Costello JT, et al. Effects of 10 days of separate heat and hypoxic exposure on heat acclimation and temperate exercise performance. Am J Physiol Regul Integr Comp Physiol. 2017;313(3):R191R201. doi:10.1152/ajpregu.00103.2017

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Nybo L, Ronnestad B, Lundby C. High or hot—perspectives on altitude camps and heat acclimation training as preparation for prolonged stage races. Scand J Med Sci Sports. Published online November 9, 2022. doi:10.1111/sms.14268

    • Search Google Scholar
    • Export Citation
  • 10.

    Baranauskas MN, Constantini K, Paris HL, et al. Heat versus altitude training for endurance performance at sea-level. Exerc Sport Sci Rev. 2021;49(1):5058. doi:10.1249/JES.0000000000000238

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Périard JD, Racinais S, Sawka MN. Adaptations and mechanisms of human heat acclimation: applications for competitive athletes and sports. Scand J Med Sci Sports. 2015;25(suppl 1):2038. doi:10.1111/sms.12408

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gore CJ, Sharpe K, Garvican-Lewis LA, et al. Altitude training and haemoglobin mass from the optimised carbon monoxide rebreathing method determined by a meta-analysis. Br J Sports Med. 2013;47(suppl 1):i31i39. doi:10.1136/bjsports-2013-092840

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Rasmussen P, Siebenmann C, Diaz V, et al. Red cell volume expansion at altitude: a meta-analysis and Monte Carlo simulation. Med Sci Sports Exerc. 2013;45(9):17671772. doi:10.1249/MSS.0b013e31829047e5

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Rønnestad BR, Hamarsland H, Hansen J, et al. Five weeks of heat training increases hemoglobin mass in elite cyclists. Exp Physiol. 2021;106(1):316327. doi:10.1113/EP088544

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Oberholzer L, Siebenmann C, Mikkelsen CJ, et al. Hematological adaptations to prolonged heat acclimation in endurance-trained males. Front Physiol. 2019;10:1379. doi:10.3389/fphys.2019.01379

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Donnelly S. Why is erythropoietin made in the kidney? The kidney functions as a critmeter. Am J Kidney Dis. 2001;38(2):415425. doi:10.1053/ajkd.2001.26111

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Dunn A, Lo V, Donnelly S. The role of the kidney in blood volume regulation: the kidney as a regulator of the hematocrit. Am J Med Sci. 2007;334(1):6571. doi:10.1097/MAJ.0b013e318095a4ae

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Maloyan A, Eli-Berchoer L, Semenza GL, et al. HIF-1alpha-targeted pathways are activated by heat acclimation and contribute to acclimation-ischemic cross-tolerance in the heart. Physiol Genomics. 2005;23(1):7988. doi:10.1152/physiolgenomics.00279.2004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Sawka MN, Convertino VA, Eichner ER, et al. Blood volume: importance and adaptations to exercise training, environmental stresses, and trauma/sickness. Med Sci Sports Exerc. 2000;32(2):332348. doi:10.1097/00005768-200002000-00012

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Young AJ, Karl JP, Berryman CE, et al. Variability in human plasma volume responses during high-altitude sojourn. Physiol Rep. 2019;7(6):e14051. doi:10.14814/phy2.14051

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Siebenmann C, Robach P, Lundby C. Regulation of blood volume in lowlanders exposed to high altitude. J Appl Physiol. 2017;123(4):957966. doi:10.1152/japplphysiol.00118.2017

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Takeno Y, Kamijo YI, Nose H. Thermoregulatory and aerobic changes after endurance training in a hypobaric hypoxic and warm environment. J Appl Physiol. 2001;91(4):15201528. doi:10.1152/jappl.2001.91.4.1520

    • Search Google Scholar
    • Export Citation
  • 23.

    Girard O, Brocherie F, Bishop DJ. Sprint performance under heat stress: a review. Scand J Med Sci Sports. 2015;25:7989. doi:10.1111/sms.12437

  • 24.

    Fenemor S, Driller MW, Gill N, et al. Practical application of a mixed active and passive heat acclimation protocol in elite male Olympic team sport athletes. Appl Physiol Nutr Metab. 2022;47(10):981991. doi:10.1139/apnm-2022-0112

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Duvnjak-Zaknich DM, Wallman KE, Dawson BT, et al. Continuous and intermittent heat acclimation and decay in team sport athletes. Eur J Sport Sci. 2019;19(3):295304. doi:10.1080/17461391.2018.1512653

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Brocherie F, Millet GP, Hauser A, et al. “Live high-train low and high” hypoxic training improves team-sport performance. Med Sci Sports Exerc. 2015;47(10):21402149. doi:10.1249/MSS.0000000000000630

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Galvin HM, Cooke K, Sumners DP, et al. Repeated sprint training in normobaric hypoxia. Br J Sports Med. 2013;47(suppl 1):i74i79. doi:10.1136/bjsports-2013-092826

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Racinais S, Périard JD, Piscione J, et al. Intensified training supersedes the impact of heat and/or altitude for increasing performance in elite rugby union players. Int J Sports Physiol Perform. 2021;16(10):14161423. doi:10.1123/ijspp.2020-0630

    • Search Google Scholar
    • Export Citation
  • 29.

    Faiss R, Leger B, Vesin JM, et al. Significant molecular and systemic adaptations after repeated sprint training in hypoxia. PLoS One. 2013;8(2):e56522. doi:10.1371/journal.pone.0056522

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Kenefick RW, Ely BR, Cheuvront SN, et al. Prior heat stress: effect on subsequent 15-min time trial performance in the heat. Med Sci Sports Exerc. 2009;41(6):13111316. doi:10.1249/MSS.0b013e3181988c14

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Dill DB, Costill DL. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol. 1974;37(2):247248. doi:10.1152/jappl.1974.37.2.247

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Schmidt W, Prommer N. The optimised CO-rebreathing method: a new tool to determine total haemoglobin mass routinely. Eur J Appl Physiol. 2005;95(5–6):486495. doi:10.1007/s00421-005-0050-3

    • Search Google Scholar
    • Export Citation
  • 33.

    Travers G, Nichols D, Riding N, et al. Heat acclimation with controlled heart rate: influence of hydration status. Med Sci Sports Exerc. 2020;52(8):18151824. doi:10.1249/MSS.0000000000002320

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Bedford T. The Warmth Factor in Comfort at Work: A Physiological Study of Heating and Ventilation. Medical Research Council Industrial Health Research Board; 1936:35.

    • Search Google Scholar
    • Export Citation
  • 35.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. doi:10.1249/00005768-198205000-00012

  • 36.

    Hooper SL, Mackinnon LT, Howard A, et al. Markers for monitoring overtraining and recovery. Med Sci Sport Exerc. 1995;27(1):106112. doi:10.1249/00005768-199501000-00019

    • Search Google Scholar
    • Export Citation
  • 37.

    Roach RC, Bärtsch P, Hackett PH, et al. The Lake Louise acute mountain sickness scoring system. In: Sutton JR, Houston CS, & Coates G, eds. Hypoxia and Molecular Medicine. Queen City Press; 1993:272274.

    • Search Google Scholar
    • Export Citation
  • 38.

    Bourdon PC, Cardinale M, Murray A, et al. Monitoring athlete training loads: Consensus statement. Int J Sports Physiol Perform. 2017;12(suppl 1):S2161S2170. doi:10.1123/IJSPP.2017-0208

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Sunderland C, Morris JG, Nevill ME. A heat acclimation protocol for team sports. Br J Sports Med. 2008;42(5):327333. doi:10.1136/bjsm.2007.034207

    • Search Google Scholar
    • Export Citation
  • 40.

    Garvican-Lewis LA, Sharpe K, Gore CJ. Time for a new metric for hypoxic dose? J Appl Physiol. 2016;121(1):352355. doi:10.1152/japplphysiol.00579.2015

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Garvican-Lewis LA, Clark SA, Polglaze T, et al. Ten days of simulated live high:train low altitude training increases Hbmass in elite water polo players. Br J Sports Med. 2013;47(suppl 1):i70i73. doi:10.1136/bjsports-2013-092746

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    McLean BD, Buttifant D, Gore CJ, et al. Year-to-year variability in haemoglobin mass response to two altitude training camps. Br J Sports Med 2013;47(suppl 1):i51i58. doi:10.1136/bjsports-2013-092744

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Wachsmuth N, Kley M, Spielvogel H, et al. Changes in blood gas transport of altitude native soccer players near sea-level and sea-level native soccer players at altitude (ISA3600). Br J Sports Med. 2013;47(suppl 1):i93i99. doi:10.1136/bjsports-2013-092761

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Robach P, Lundby C. Is live high-train low altitude training relevant for elite athletes with already high total hemoglobin mass? Scand J Med Sci Sports 2012;22(3):303305. doi:10.1111/j.1600-0838.2012.01457.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Harrison MH, Graveney MJ, Cochrane LA. Some sources of error in the calculation of relative change in plasma volume. Eur J Appl Physiol Occup Physiol. 1982;50(1):1321. doi:10.1007/BF00952240

    • Search Google Scholar
    • Export Citation
  • 46.

    Meylan CMP, Bowman K, Stellingwerff T, et al. The efficacy of heat acclimatization pre-World Cup in female soccer players. Front Sports Act Living. 2021;3:614370. doi:10.3389/fspor.2021.614370

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Racinais S, Buchheit M, Bilsborough J, et al. Physiological and performance responses to a training-camp in the heat in professional Australian football players. Int J Sports Physiol Perform. 2014;9(4):598603. doi:10.1123/ijspp.2013-0284

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1253 1253 255
Full Text Views 177 177 25
PDF Downloads 139 139 11