Mixed-Method Precooling Enhances Self-Paced 20-km Cycling Time-Trial Performance When Apparent Temperature Is >46 °C but May Not Be a Priority in <46 °C

Click name to view affiliation

Julian Andro P. Ramos Curtin School of Allied Health, Curtin University, Perth, Australia

Search for other papers by Julian Andro P. Ramos in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6000-4156 *
,
Kagan J. Ducker Curtin School of Allied Health, Curtin University, Perth, Australia

Search for other papers by Kagan J. Ducker in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4251-649X
,
Hugh Riddell Curtin School of Allied Health, Curtin University, Perth, Australia

Search for other papers by Hugh Riddell in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8218-7822
,
Olivier Girard School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, Australia

Search for other papers by Olivier Girard in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4797-182X
,
Grant J. Landers School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, Australia

Search for other papers by Grant J. Landers in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2679-4342
, and
Carly J. Brade Curtin School of Allied Health, Curtin University, Perth, Australia

Search for other papers by Carly J. Brade in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9341-1412
Restricted access

Purpose: Precooling (PreC) may only benefit performance when thermal strain experienced by an individual is sufficiently high. We explored the effect of mixed-method PreC on 20-km cycling time-trial (CTT) performance under 3 different apparent temperatures (AT). Methods: On separate days, 12 trained or highly trained male cyclists/triathletes completed six 20-km CTTs in 3 different ATs: hot-dry (35 °C AT), moderately hot-humid (40 °C AT), and hot-humid (46 °C AT). All trials were preceded by 30 minutes of mixed-method PreC or no PreC (control [CON]). Results: Faster 2.5-km-split completion times occurred in PreC compared with CON in 46 °C AT (P = .02), but not in 40 °C AT (P = .62) or 35 °C AT (P = .57). PreC did not affect rectal and body temperature during the 20-km CTT. Skin temperature was lower throughout the CTT in PreC compared with CON in 46 °C AT (P = .01), but not in 40 °C AT (P = 1.00) and 35 °C AT (P = 1.00). Heart rate had a greater rate of increase during the CTT for PreC compared with CON in 46 °C AT (P = .01), but not in 40 °C AT (P = .57) and 35 °C AT (P = 1.00). Ratings of perceived exertion (P < .001) and thermal comfort (P = .04) were lower for PreC compared with CON in 46 °C AT only, while thermal sensation was not different between PreC and CON. Conclusion: Mixed-method PreC should be applied prior to 20-km CTTs conducted in hot-humid conditions (≥46 °C AT). Alternatively, mixed-method PreC may be a priority in moderately hot-humid (∼40 °C AT) conditions but should not be in hot-dry (∼35 °C AT) conditions for 20-km CTT.

Supplementary Materials

    • Supplementary Material (PDF 413 KB)
  • Collapse
  • Expand
  • 1.

    Gonzalez-Alonso J, Crandall CG, Johnson JM. The cardiovascular challenge of exercising in the heat. J Physiol. 2008;586(1):4553. PubMed ID: 17855754 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Wendt D, van Loon LJC, Lichtenbelt WDVM. Thermoregulation during exercise in the heat: strategies for maintaining health and performance. Sports Med. 2007;37(8):669682. PubMed ID: 17645370 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Periard JD, Eijsvogels TM, Daanen HAM. Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies. Physiol Rev. 2021;101(4):18731979. PubMed ID: 33829868 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Bongers CC, Hopman MT, Eijsvogels TM. Cooling interventions for athletes: an overview of effectiveness, physiological mechanisms, and practical considerations. Temperature. 2017;4(1):6078. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Wegmann M, Faude O, Poppendieck W, Hecksteden A, Frohlich M, Meyer T. Pre-cooling and sports performance: a meta-analytical review. Sports Med. 2012;42(7):545564. PubMed ID: 22642829 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Faulkner SH, Broekhuijzen I, Raccuglia M, Hupperets M, Hodder SG, Havenith G. The threshold ambient temperature for the use of pre-cooling to improve cycling time trial performance. Int J Sports Physiol Perform. 2018;14(3):323330. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Maia-Lima A, Ramos GP, Moraes MM, et al. Effects of precooling on 30-km cycling performance and pacing in hot and temperate environments. Int J Sports Med. 2017;38(1):4854. PubMed ID: 28073123 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Steadman RG. Norms of apparent temperature in Australia. Aust Met Mag. 1994;43:116.

  • 9.

    Bright FM, Clark B, Jay O, Periard JD. The effect of minimal differences in the skin-to-air vapor pressure gradient at various dry-bulb temperatures on self-paced exercise performance. J Appl Physiol. 2021;131(3):11761185. PubMed ID: 34323591 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Du Bois D, Du Bois EF. Clinical calorimetry: tenth paper a formula to estimate the approximate surface area if height and weight be known. Arch Intern Med. 1916;17(6):863871. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    McKay AKA, Stellingwerff T, Smith ES, et al. Defining training and performance caliber: a participant classification framework. Int J Sports Physiol Perform. 2022;17(2):317331. PubMed ID: 34965513 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Ramanathan NL. A new weighting system for mean surface temperature of the human body. J Appl Physiol. 1964;19:531333. doi:

  • 13.

    Ihsan M, Landers G, Brearley M, Peeling P. Beneficial effects of ice ingestion as a precooling strategy on 40-km cycling time-trial performance. Int J Sports Physiol Perform. 2010;5(2):140151. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Borg G. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381.

  • 15.

    Gaoua N, Grantham J, Racinais S, El Massioui F. Sensory displeasure reduces complex cognitive performance in the heat. J Environ Psychol. 2012;32(2):158163. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;3:9298.

  • 17.

    Burton AC. Human Calorimetry: II. The average temperature of the tissues of the body: three figures. J Nutr. 1935;9(3):261280. doi:

  • 18.

    Bryk AS, Raudenbush SW. Hierarchical Linear Models: Applications and Data Analysis Methods. Sage Publications, Inc, 1992.

  • 19.

    Pek J, Flora DB. Reporting effect sizes in original psychological research: a discussion and tutorial. Psychol Methods. 2018;23(2):208225. PubMed ID: 28277690 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Brade C, Dawson B, Wallman K. Effect of precooling and acclimation on repeat-sprint performance in heat. J Sports Sci. 2013;31(7):779786. PubMed ID: 23215944 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Castle P, Mackenzie RW, Maxwell N, Webborn AD, Watt PW. Heat acclimation improves intermittent sprinting in the heat but additional pre-cooling offers no further ergogenic effect. J Sports Sci. 2011;29(11):11251134. PubMed ID: 21777052 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Brade C, Dawson B, Wallman K. Effect of pre-cooling on repeat-sprint performance in seasonally acclimatised males during an outdoor simulated team-sport protocol in warm conditions. J Sports Sci Med. 2013;12(3):565570. PubMed ID: 24149166

    • Search Google Scholar
    • Export Citation
  • 23.

    Ross M, Garvican LA, Jeacocke NA, et al. Novel precooling strategy enhances time trial cycling in the heat. Med Sci Sports Exerc. 2011;43(1):123133. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Schlader ZJ, Simmons SE, Stannard SR, Mundel T. Skin temperature as a thermal controller of exercise intensity. Eur J Appl Physiol. 2011;111(8):16311639. PubMed ID: 21197543 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Tucker R, Rauch L, Harley YX, Noakes TD. Impaired exercise performance in the heat is associated with an anticipatory reduction in skeletal muscle recruitment. Eur J Appl Physiol. 2004;448(4):422430. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Sawka MN, Cheuvront SN, Kenefick RW. High skin temperature and hypohydration impair aerobic performance. Exp Physiol. 2011;97(3):327332. PubMed ID: 22143882 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5110 5110 710
Full Text Views 43 43 1
PDF Downloads 65 65 1