The aims of the study were to investigate whether starting cadence had an effect on 10-s sprint-performance indices in friction-loaded cycle ergometry and to investigate the influence of method of power determination. In a counterbalanced order, 12 men and 12 women performed three 10-s sprints using a stationary (0 rev/min), moderate (60 rev/min), and high (120 rev/min) starting cadence Calculated performance indices were peak power, cadence at peak power, time to peak power, and work to peak power. When the uncorrected method of power determination was applied, there was a main effect for starting cadence in female participants for peak power (stationary 635 ± 183.7 W, moderate 615.4 ± 168.9 W and high 798.4 ± 120.1 W) and cadence at peak power (89.8 ± 2.3 rev/min, 87.9 ± 21.5 rev/min, and 113.1 ± 12.5 rev/min). For both the uncorrected and directly measured methods of power determination in men and women, there was a main effect for starting cadence for time to peak power and work to peak power. In women, for an uncorrected method of power determination, it can be concluded that starting cadence does affect peak power and cadence at peak power. This effect is, however, negated by a direct-measurement method of power determination. In men and women, for both uncorrected and directly measured methods o power determination, time to peak power and work to peak power were affected by starting cadence. Therefore, a higher-cadence start is unsuitable, particularly when sprint-performance indices are determined from an uncorrected method.