Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose:

To determine the effectiveness of a progressively “skating specific” periodized off-season training program on skating performance in competitive hockey players.

Methods:

Twenty (M = 18; F = 2) highly skilled hockey players (age 15.9 ± 1.5 yr) completed 16 wk of standardized resistance and stability training supplemented with either off-ice simulated skating using the SkateSIM (SIM) or plyometric training (PLY) in a crossover design. Group 1 (PLY-SIM; N = 11) completed 8 wk of PLY followed by 8 wk of SIM. Group 2 (SIM-PLY; N = 9) completed 8 wk of SIM followed by 8 wk of PLY. Subjects completed on- and off-ice testing PRE, MID, and POST training.

Results:

Significant improvements in on-ice 35-m skating sprint (1.0%; P = .009) with significant improvements of 5% to 12% in various off-ice testing measures were observed PRE-MID in both groups. While few off-ice tests improved MID-POST, on-ice 35-m skating sprint times improved MID-POST by 2.3% (P = .000) with greater improvement in PLY-SIM (3.5%) versus SIM-PLY (0.8%; P < .002). Off-ice 30-m sprint (r = 0.56; P = .010) and Edgren side shuffle (r = –0.46; P < .040) were the only off-ice tests that significantly correlated to improvements in on-ice skating sprint performance.

Conclusion:

The initial gains PRE-MID and then the lack of improvement in many off-ice tests from the MID-POST supports the principle of diminishing returns in response to standardized resistance training. The improvement in on-ice skating sprint performance when supplemental training progressed in specificity supports the principle of specificity and promotes transfer to a complex sporting movement such as skating.

The authors are with the School of Recreation Management and Kinesiology, Acadia University, Wolfville, Nova Scotia, Canada.