Click name to view affiliation
The purpose of this study was to determine the relationships between split times within sprint tests over 30 m and 40 m in elite Australian Rules footballers.
Data were analyzed from two Australian Football League (AFL) clubs. The first club (n = 35) conducted a 40-m sprint test and recorded split times at 10 m and 20 m. The second club (n = 30) conducted a 30-m sprint test and recorded splits at 10 m and 20 m. Analyses included calculation of Pearson correlations and common variances between all the split times as well as “flying” times (20–40 m for the first club and 20 to 30 m for the second club).
There was a high correlation (r = 0.94) between 10-m time and 20-m time within each club, indicating these measures assessed very similar speed qualities. The correlations between 10-m time and times to 30 m and 40 m decreased, but still produced common variances of 79% and 66% respectively. However when the “flying” times (20–40 m and 20–30 m) were correlated to 10-m time, the common variances decreased substantially to 25% and 42% respectively, indicating uniqueness.
It was concluded that 10-m time is a good refection of acceleration capabilities and either 20 to 40 m in a 40-m sprint test or 20 to 30 m in a 30-m sprint test can be used to estimate maximum speed capabilities. It was suggested that sprint tests over 30 m or 40 m can be conducted indoors to provide useful information about independent speed qualities in athletes.
Young is with the School of Human Movement & Sport Sciences, University of Ballarat, Ballarat, Victoria, Australia; Russell, Burge, and Clarke are with the Hawthorn Football Club, Mt. Waverly, Victoria, Australia; and Cormack and Stewart are with the West Coast Eagles Football Club, Subiaco, W.A.