Effects of Two Contrast Training Programs on Jump Performance in Rugby Union Players During a Competition Phase

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose:

There is little literature comparing contrast training programs typically performed by team-sport athletes within a competitive phase. We compared the effects of two contrast training programs on a range of measures in high-level rugby union players during the competition season.

Methods:

The programs consisted of a higher volume-load (strength-power) or lower volume-load (speed-power) resistance training; each included a tapering of loading (higher force early in the week, higher velocity later in the week) and was performed twice a week for 4 wk. Eighteen players were assessed for peak power during a bodyweight countermovement jump (BWCMJ), bodyweight squat jump (BWSJ), 50 kg countermovement jump (50CMJ), 50 kg squat jump (50SJ), broad jump (BJ), and reactive strength index (RSI; jump height divided by contact time during a depth jump). Players were then randomized to either training group and were reassessed following the intervention. Inferences were based on uncertainty in outcomes relative to thresholds for standardized changes.

Results:

There were small between-group differences in favor of strength-power training for mean changes in the 50CMJ (8%; 90% confidence limits, ±8%), 50SJ (8%; ±10%), and BJ (2%; ±3%). Differences between groups for BWCMJ, BWSJ, and reactive strength index were unclear. For most measures there were smaller individual differences in changes with strength-power training.

Conclusion:

Our findings suggest that high-level rugby union athletes should be exposed to higher volume-load contrast training which includes one heavy lifting session each week for larger and more uniform adaptation to occur in explosive power throughout a competitive phase of the season.

Christos K. Argus is with Sports Performance Research Institute New Zealand, AUT University, Auckland, New Zealand. Nicholas D. Gill is with Sports Performance Research Institute New Zealand, AUT University, Auckland, New Zealand. Justin W.L. Keogh is with Sports Performance Research Institute New Zealand, AUT University, Auckland, New Zealand, and with the Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia. Michael R. McGuigan is with Sports Performance Research Institute New Zealand, AUT University, Auckland, New Zealand, and with the School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Australia. Will G. Hopkins is with Sports Performance Research Institute New Zealand, AUT University, Auckland, New Zealand.