Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00


To determine the intraday and interday reliability of a 2 × 4-min performance test on a cycle ergometer (Wattbike) separated by 30 min of passive recovery (2 × 4MMP).


Twelve highly trained cyclists (mean ± SD; age = 20 ± 2 y, predicted VO2max = 59.0 ± 3.6 mL · kg−1 · min−1) completed six 2 × 4MMP cycling tests on a Wattbike ergometer separated by 7 d. Mean power was measured to determine intraday (test 1 [T1] to test 2 [T2]) and interday reliability (weeks 1–6) over the repeated trials.


The mean intraday reliabilities of the 2 × 4MMP test, as expressed by the typical error of measurement (TEM, W) and coefficient of variation (CV, %) over the 6 wk, were 10.0 W (95% confidence limits [CL] 8.2–11.8), and 2.6% (95%CL 2.1–3.1), respectively. The mean interday reliability TEM and CV for T1 over the 6 wk were 10.4 W (95%CL 8.7–13.3) and 2.7% (95%CL 2.3–3.5), respectively, and 11.7 W (95%CL 9.8–15.1) and 3.0% (95%CL 2.5–3.9) for T2.


The testing protocol performed on a Wattbike cycle ergometer in the current study is reproducible in highly trained cyclists. The high intraday and interday reliability make it a reliable method for monitoring cycling performance and for investigating factors that affect performance in cycling events.

Driller is with the Dept of Sport and Leisure Studies, University of Waikato, Hamilton, New Zealand. Argus, Bartram, Bonaventura, Martin, and Halson are with the Physiology Dept, Australian Institute of Sport, Belconnen, ACT, Australia. West is with the Centre for Medicine and Oral Health, Griffith University, Southport, QLD, Australia.