A Polymorphism in a Functional Region of the COL5A1 Gene: Association With Ultraendurance-Running Performance and Joint Range of Motion

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose:

Endurance-running performance and joint range of motion (ROM) are both multifactorial phenotypes. A single-nucleotide polymorphism, rs172722 (C/T), in the COL5A1 3′-untranslated region (UTR) was shown to independently associate with both phenotypes. Two major functional forms of the COL5A1 3′-UTR have been identified and differ by 7 tightly linked polymorphisms that include rs12722 and a short tandem-repeat polymorphism (STRP rs71746744, –/AGGG). It has been proposed that STRP rs71746744 plays a role in the predicted secondary structures and mRNA stability of the 2 major forms of the COL5A1 3′-UTR, therefore implying a regulatory role. The aim of this study was to determine whether STRP rs71746744 is independently associated with running performance and prerace sit-and-reach range of motion (SR ROM) in a cohort of ultramarathon road runners.

Methods:

One hundred six (74 men and 32 women, age 22–67 y) white runners who participated in either the 2009 or 2011 Two Oceans 56-km ultramarathon were included in this cross-sectional study. Their SR ROM measurements, COL5A1 rs71746744 genotype, and overall race times were determined.

Results:

COL5A1 rs71746744 was independently associated with running performance (P = .024) and prerace sr rom (P = .020). Moreover, the AGGG/AGGG genotype was significantly overrepresented in the fastest and inflexible athletes compared with those with either the –/AGGG or –/– genotype.

Conclusions:

These findings provide further evidence for a relationship between COL5A1, running performance, and SR ROM. Further studies are needed to investigate the effect of this variant on the mechanical properties of connective tissue.

The authors are with the UCT/MRC Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa. Collins is also with the South African Medical Research Council, Cape Town, South Africa. Address author correspondence to Malcolm Collins at malcolm.collins@uct.ac.za.