Purpose:

To examine the training and concomitant changes in laboratory- and field-test performance of highly trained endurance runners.

Methods:

Fourteen highly trained male endurance runners (mean ± SD maximal oxygen uptake [VO2max] 69.8 ± 6.3 mL · kg−1 · min−1) completed this 1-y training study commencing in April. During the study the runners undertook 5 laboratory tests of VO2max, lactate threshold (LT), and running economy and 9 field tests to determine critical speed (CS) and the modeled maximum distance performed above CS (D′). The data for different periods of the year were compared using repeated-measures ANOVA. The influence of training on laboratory- and field-test changes was analyzed by multiple regression.

Results:

Total training distance varied during the year and was lower in May–July (333 ± 206 km, P = .01) and July–August (339 ± 206 km, P = .02) than in the subsequent January–February period (474 ± 188 km). VO2max increased from the April baseline (4.7 ± 0.4 L/min) in October and January periods (5.0 ± 0.4 L/min, P ≤ .01). Other laboratory measures did not change. Runners’ CS was lowest in August (4.90 ± 0.32 m/s) and highest in February (4.99 ± 0.30 m/s, P = .02). Total training distance and the percentage of training time spent above LT velocity explained 33% of the variation in CS.

Conclusion:

Highly trained endurance runners achieve small but significant changes in VO2max and CS in a year. Increases in training distance and time above LT velocity were related to increases in CS.